This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Explicit bijection in the reverse of mapsnf1o2 . (Contributed by Stefan O'Rear, 24-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mapsncnv.s | ⊢ 𝑆 = { 𝑋 } | |
| mapsncnv.b | ⊢ 𝐵 ∈ V | ||
| mapsncnv.x | ⊢ 𝑋 ∈ V | ||
| mapsnf1o3.f | ⊢ 𝐹 = ( 𝑦 ∈ 𝐵 ↦ ( 𝑆 × { 𝑦 } ) ) | ||
| Assertion | mapsnf1o3 | ⊢ 𝐹 : 𝐵 –1-1-onto→ ( 𝐵 ↑m 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapsncnv.s | ⊢ 𝑆 = { 𝑋 } | |
| 2 | mapsncnv.b | ⊢ 𝐵 ∈ V | |
| 3 | mapsncnv.x | ⊢ 𝑋 ∈ V | |
| 4 | mapsnf1o3.f | ⊢ 𝐹 = ( 𝑦 ∈ 𝐵 ↦ ( 𝑆 × { 𝑦 } ) ) | |
| 5 | eqid | ⊢ ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ↦ ( 𝑥 ‘ 𝑋 ) ) = ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ↦ ( 𝑥 ‘ 𝑋 ) ) | |
| 6 | 1 2 3 5 | mapsnf1o2 | ⊢ ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ↦ ( 𝑥 ‘ 𝑋 ) ) : ( 𝐵 ↑m 𝑆 ) –1-1-onto→ 𝐵 |
| 7 | f1ocnv | ⊢ ( ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ↦ ( 𝑥 ‘ 𝑋 ) ) : ( 𝐵 ↑m 𝑆 ) –1-1-onto→ 𝐵 → ◡ ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ↦ ( 𝑥 ‘ 𝑋 ) ) : 𝐵 –1-1-onto→ ( 𝐵 ↑m 𝑆 ) ) | |
| 8 | 6 7 | ax-mp | ⊢ ◡ ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ↦ ( 𝑥 ‘ 𝑋 ) ) : 𝐵 –1-1-onto→ ( 𝐵 ↑m 𝑆 ) |
| 9 | 1 2 3 5 | mapsncnv | ⊢ ◡ ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ↦ ( 𝑥 ‘ 𝑋 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 𝑆 × { 𝑦 } ) ) |
| 10 | 4 9 | eqtr4i | ⊢ 𝐹 = ◡ ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ↦ ( 𝑥 ‘ 𝑋 ) ) |
| 11 | f1oeq1 | ⊢ ( 𝐹 = ◡ ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ↦ ( 𝑥 ‘ 𝑋 ) ) → ( 𝐹 : 𝐵 –1-1-onto→ ( 𝐵 ↑m 𝑆 ) ↔ ◡ ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ↦ ( 𝑥 ‘ 𝑋 ) ) : 𝐵 –1-1-onto→ ( 𝐵 ↑m 𝑆 ) ) ) | |
| 12 | 10 11 | ax-mp | ⊢ ( 𝐹 : 𝐵 –1-1-onto→ ( 𝐵 ↑m 𝑆 ) ↔ ◡ ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ↦ ( 𝑥 ‘ 𝑋 ) ) : 𝐵 –1-1-onto→ ( 𝐵 ↑m 𝑆 ) ) |
| 13 | 8 12 | mpbir | ⊢ 𝐹 : 𝐵 –1-1-onto→ ( 𝐵 ↑m 𝑆 ) |