This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sum of a telescoping series. (Contributed by Mario Carneiro, 15-Jun-2014) (Revised by Mario Carneiro, 2-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | telfsum.1 | ⊢ ( 𝑘 = 𝑗 → 𝐴 = 𝐵 ) | |
| telfsum.2 | ⊢ ( 𝑘 = ( 𝑗 + 1 ) → 𝐴 = 𝐶 ) | ||
| telfsum.3 | ⊢ ( 𝑘 = 𝑀 → 𝐴 = 𝐷 ) | ||
| telfsum.4 | ⊢ ( 𝑘 = ( 𝑁 + 1 ) → 𝐴 = 𝐸 ) | ||
| telfsum.5 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | ||
| telfsum.6 | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | ||
| telfsum.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → 𝐴 ∈ ℂ ) | ||
| Assertion | telfsum2 | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ( 𝐶 − 𝐵 ) = ( 𝐸 − 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | telfsum.1 | ⊢ ( 𝑘 = 𝑗 → 𝐴 = 𝐵 ) | |
| 2 | telfsum.2 | ⊢ ( 𝑘 = ( 𝑗 + 1 ) → 𝐴 = 𝐶 ) | |
| 3 | telfsum.3 | ⊢ ( 𝑘 = 𝑀 → 𝐴 = 𝐷 ) | |
| 4 | telfsum.4 | ⊢ ( 𝑘 = ( 𝑁 + 1 ) → 𝐴 = 𝐸 ) | |
| 5 | telfsum.5 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | |
| 6 | telfsum.6 | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 7 | telfsum.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → 𝐴 ∈ ℂ ) | |
| 8 | fzval3 | ⊢ ( 𝑁 ∈ ℤ → ( 𝑀 ... 𝑁 ) = ( 𝑀 ..^ ( 𝑁 + 1 ) ) ) | |
| 9 | 5 8 | syl | ⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) = ( 𝑀 ..^ ( 𝑁 + 1 ) ) ) |
| 10 | 9 | sumeq1d | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ( 𝐶 − 𝐵 ) = Σ 𝑗 ∈ ( 𝑀 ..^ ( 𝑁 + 1 ) ) ( 𝐶 − 𝐵 ) ) |
| 11 | 1 2 3 4 6 7 | telfsumo2 | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝑀 ..^ ( 𝑁 + 1 ) ) ( 𝐶 − 𝐵 ) = ( 𝐸 − 𝐷 ) ) |
| 12 | 10 11 | eqtrd | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ( 𝐶 − 𝐵 ) = ( 𝐸 − 𝐷 ) ) |