This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The addition of the next term in a finite sum of A ( k ) is the current term plus B i.e. A ( N + 1 ) . (Contributed by NM, 4-Nov-2005) (Revised by Mario Carneiro, 21-Apr-2014) (Proof shortened by SN, 22-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsump1.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| fsump1.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → 𝐴 ∈ ℂ ) | ||
| fsump1.3 | ⊢ ( 𝑘 = ( 𝑁 + 1 ) → 𝐴 = 𝐵 ) | ||
| Assertion | fsump1 | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) 𝐴 = ( Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 + 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsump1.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 2 | fsump1.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → 𝐴 ∈ ℂ ) | |
| 3 | fsump1.3 | ⊢ ( 𝑘 = ( 𝑁 + 1 ) → 𝐴 = 𝐵 ) | |
| 4 | peano2uz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 5 | 1 4 | syl | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 6 | 5 2 3 | fsumm1 | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) 𝐴 = ( Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑁 + 1 ) − 1 ) ) 𝐴 + 𝐵 ) ) |
| 7 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 8 | 1 7 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 9 | 8 | zcnd | ⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 10 | 1cnd | ⊢ ( 𝜑 → 1 ∈ ℂ ) | |
| 11 | 9 10 | pncand | ⊢ ( 𝜑 → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 12 | 11 | oveq2d | ⊢ ( 𝜑 → ( 𝑀 ... ( ( 𝑁 + 1 ) − 1 ) ) = ( 𝑀 ... 𝑁 ) ) |
| 13 | 12 | sumeq1d | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑁 + 1 ) − 1 ) ) 𝐴 = Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ) |
| 14 | 13 | oveq1d | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑁 + 1 ) − 1 ) ) 𝐴 + 𝐵 ) = ( Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 + 𝐵 ) ) |
| 15 | 6 14 | eqtrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) 𝐴 = ( Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 + 𝐵 ) ) |