This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound on the difference of logs. (Contributed by Mario Carneiro, 23-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logdifbnd | ⊢ ( 𝐴 ∈ ℝ+ → ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ 𝐴 ) ) ≤ ( 1 / 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpcn | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ ) | |
| 2 | 1cnd | ⊢ ( 𝐴 ∈ ℝ+ → 1 ∈ ℂ ) | |
| 3 | rpne0 | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ≠ 0 ) | |
| 4 | 1 2 1 3 | divdird | ⊢ ( 𝐴 ∈ ℝ+ → ( ( 𝐴 + 1 ) / 𝐴 ) = ( ( 𝐴 / 𝐴 ) + ( 1 / 𝐴 ) ) ) |
| 5 | 1 3 | dividd | ⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 / 𝐴 ) = 1 ) |
| 6 | 5 | oveq1d | ⊢ ( 𝐴 ∈ ℝ+ → ( ( 𝐴 / 𝐴 ) + ( 1 / 𝐴 ) ) = ( 1 + ( 1 / 𝐴 ) ) ) |
| 7 | 4 6 | eqtr2d | ⊢ ( 𝐴 ∈ ℝ+ → ( 1 + ( 1 / 𝐴 ) ) = ( ( 𝐴 + 1 ) / 𝐴 ) ) |
| 8 | 7 | fveq2d | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( 1 + ( 1 / 𝐴 ) ) ) = ( log ‘ ( ( 𝐴 + 1 ) / 𝐴 ) ) ) |
| 9 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 10 | rpaddcl | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ∈ ℝ+ ) → ( 𝐴 + 1 ) ∈ ℝ+ ) | |
| 11 | 9 10 | mpan2 | ⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 + 1 ) ∈ ℝ+ ) |
| 12 | relogdiv | ⊢ ( ( ( 𝐴 + 1 ) ∈ ℝ+ ∧ 𝐴 ∈ ℝ+ ) → ( log ‘ ( ( 𝐴 + 1 ) / 𝐴 ) ) = ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ 𝐴 ) ) ) | |
| 13 | 11 12 | mpancom | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( ( 𝐴 + 1 ) / 𝐴 ) ) = ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ 𝐴 ) ) ) |
| 14 | 8 13 | eqtrd | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( 1 + ( 1 / 𝐴 ) ) ) = ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ 𝐴 ) ) ) |
| 15 | rpreccl | ⊢ ( 𝐴 ∈ ℝ+ → ( 1 / 𝐴 ) ∈ ℝ+ ) | |
| 16 | rpaddcl | ⊢ ( ( 1 ∈ ℝ+ ∧ ( 1 / 𝐴 ) ∈ ℝ+ ) → ( 1 + ( 1 / 𝐴 ) ) ∈ ℝ+ ) | |
| 17 | 9 15 16 | sylancr | ⊢ ( 𝐴 ∈ ℝ+ → ( 1 + ( 1 / 𝐴 ) ) ∈ ℝ+ ) |
| 18 | 17 | reeflogd | ⊢ ( 𝐴 ∈ ℝ+ → ( exp ‘ ( log ‘ ( 1 + ( 1 / 𝐴 ) ) ) ) = ( 1 + ( 1 / 𝐴 ) ) ) |
| 19 | 17 | rpred | ⊢ ( 𝐴 ∈ ℝ+ → ( 1 + ( 1 / 𝐴 ) ) ∈ ℝ ) |
| 20 | 15 | rpred | ⊢ ( 𝐴 ∈ ℝ+ → ( 1 / 𝐴 ) ∈ ℝ ) |
| 21 | 20 | reefcld | ⊢ ( 𝐴 ∈ ℝ+ → ( exp ‘ ( 1 / 𝐴 ) ) ∈ ℝ ) |
| 22 | efgt1p | ⊢ ( ( 1 / 𝐴 ) ∈ ℝ+ → ( 1 + ( 1 / 𝐴 ) ) < ( exp ‘ ( 1 / 𝐴 ) ) ) | |
| 23 | 15 22 | syl | ⊢ ( 𝐴 ∈ ℝ+ → ( 1 + ( 1 / 𝐴 ) ) < ( exp ‘ ( 1 / 𝐴 ) ) ) |
| 24 | 19 21 23 | ltled | ⊢ ( 𝐴 ∈ ℝ+ → ( 1 + ( 1 / 𝐴 ) ) ≤ ( exp ‘ ( 1 / 𝐴 ) ) ) |
| 25 | 18 24 | eqbrtrd | ⊢ ( 𝐴 ∈ ℝ+ → ( exp ‘ ( log ‘ ( 1 + ( 1 / 𝐴 ) ) ) ) ≤ ( exp ‘ ( 1 / 𝐴 ) ) ) |
| 26 | relogcl | ⊢ ( ( 𝐴 + 1 ) ∈ ℝ+ → ( log ‘ ( 𝐴 + 1 ) ) ∈ ℝ ) | |
| 27 | 11 26 | syl | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( 𝐴 + 1 ) ) ∈ ℝ ) |
| 28 | relogcl | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) | |
| 29 | 27 28 | resubcld | ⊢ ( 𝐴 ∈ ℝ+ → ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 30 | 14 29 | eqeltrd | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( 1 + ( 1 / 𝐴 ) ) ) ∈ ℝ ) |
| 31 | efle | ⊢ ( ( ( log ‘ ( 1 + ( 1 / 𝐴 ) ) ) ∈ ℝ ∧ ( 1 / 𝐴 ) ∈ ℝ ) → ( ( log ‘ ( 1 + ( 1 / 𝐴 ) ) ) ≤ ( 1 / 𝐴 ) ↔ ( exp ‘ ( log ‘ ( 1 + ( 1 / 𝐴 ) ) ) ) ≤ ( exp ‘ ( 1 / 𝐴 ) ) ) ) | |
| 32 | 30 20 31 | syl2anc | ⊢ ( 𝐴 ∈ ℝ+ → ( ( log ‘ ( 1 + ( 1 / 𝐴 ) ) ) ≤ ( 1 / 𝐴 ) ↔ ( exp ‘ ( log ‘ ( 1 + ( 1 / 𝐴 ) ) ) ) ≤ ( exp ‘ ( 1 / 𝐴 ) ) ) ) |
| 33 | 25 32 | mpbird | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( 1 + ( 1 / 𝐴 ) ) ) ≤ ( 1 / 𝐴 ) ) |
| 34 | 14 33 | eqbrtrrd | ⊢ ( 𝐴 ∈ ℝ+ → ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ 𝐴 ) ) ≤ ( 1 / 𝐴 ) ) |