This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function on the reals between 0 and 1 lies below the comparable geometric series sum. (Contributed by Paul Chapman, 11-Sep-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eflegeo.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| eflegeo.2 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | ||
| eflegeo.3 | ⊢ ( 𝜑 → 𝐴 < 1 ) | ||
| Assertion | eflegeo | ⊢ ( 𝜑 → ( exp ‘ 𝐴 ) ≤ ( 1 / ( 1 − 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eflegeo.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | eflegeo.2 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | |
| 3 | eflegeo.3 | ⊢ ( 𝜑 → 𝐴 < 1 ) | |
| 4 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 5 | 0zd | ⊢ ( 𝜑 → 0 ∈ ℤ ) | |
| 6 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| 7 | 6 | eftval | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 8 | 7 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 9 | reeftcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℝ ) | |
| 10 | 1 9 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℝ ) |
| 11 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝐴 ↑ 𝑛 ) = ( 𝐴 ↑ 𝑘 ) ) | |
| 12 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) | |
| 13 | ovex | ⊢ ( 𝐴 ↑ 𝑘 ) ∈ V | |
| 14 | 11 12 13 | fvmpt | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) |
| 15 | 14 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) |
| 16 | reexpcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℝ ) | |
| 17 | 1 16 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℝ ) |
| 18 | faccl | ⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℕ ) | |
| 19 | 18 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 20 | 19 | nnred | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℝ ) |
| 21 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ ℝ ) |
| 22 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) | |
| 23 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 0 ≤ 𝐴 ) |
| 24 | 21 22 23 | expge0d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 0 ≤ ( 𝐴 ↑ 𝑘 ) ) |
| 25 | 19 | nnge1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 1 ≤ ( ! ‘ 𝑘 ) ) |
| 26 | 17 20 24 25 | lemulge12d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ≤ ( ( ! ‘ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) |
| 27 | 19 | nngt0d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 0 < ( ! ‘ 𝑘 ) ) |
| 28 | ledivmul | ⊢ ( ( ( 𝐴 ↑ 𝑘 ) ∈ ℝ ∧ ( 𝐴 ↑ 𝑘 ) ∈ ℝ ∧ ( ( ! ‘ 𝑘 ) ∈ ℝ ∧ 0 < ( ! ‘ 𝑘 ) ) ) → ( ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ≤ ( 𝐴 ↑ 𝑘 ) ↔ ( 𝐴 ↑ 𝑘 ) ≤ ( ( ! ‘ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) ) | |
| 29 | 17 17 20 27 28 | syl112anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ≤ ( 𝐴 ↑ 𝑘 ) ↔ ( 𝐴 ↑ 𝑘 ) ≤ ( ( ! ‘ 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) ) |
| 30 | 26 29 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ≤ ( 𝐴 ↑ 𝑘 ) ) |
| 31 | 1 | recnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 32 | 6 | efcllem | ⊢ ( 𝐴 ∈ ℂ → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ∈ dom ⇝ ) |
| 33 | 31 32 | syl | ⊢ ( 𝜑 → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ∈ dom ⇝ ) |
| 34 | 1 2 | absidd | ⊢ ( 𝜑 → ( abs ‘ 𝐴 ) = 𝐴 ) |
| 35 | 34 3 | eqbrtrd | ⊢ ( 𝜑 → ( abs ‘ 𝐴 ) < 1 ) |
| 36 | 31 35 15 | geolim | ⊢ ( 𝜑 → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ) ⇝ ( 1 / ( 1 − 𝐴 ) ) ) |
| 37 | seqex | ⊢ seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ) ∈ V | |
| 38 | ovex | ⊢ ( 1 / ( 1 − 𝐴 ) ) ∈ V | |
| 39 | 37 38 | breldm | ⊢ ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ) ⇝ ( 1 / ( 1 − 𝐴 ) ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ) ∈ dom ⇝ ) |
| 40 | 36 39 | syl | ⊢ ( 𝜑 → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ) ∈ dom ⇝ ) |
| 41 | 4 5 8 10 15 17 30 33 40 | isumle | ⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ0 ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ≤ Σ 𝑘 ∈ ℕ0 ( 𝐴 ↑ 𝑘 ) ) |
| 42 | efval | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) | |
| 43 | 31 42 | syl | ⊢ ( 𝜑 → ( exp ‘ 𝐴 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 44 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) | |
| 45 | 31 44 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
| 46 | 4 5 15 45 36 | isumclim | ⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ0 ( 𝐴 ↑ 𝑘 ) = ( 1 / ( 1 − 𝐴 ) ) ) |
| 47 | 46 | eqcomd | ⊢ ( 𝜑 → ( 1 / ( 1 − 𝐴 ) ) = Σ 𝑘 ∈ ℕ0 ( 𝐴 ↑ 𝑘 ) ) |
| 48 | 41 43 47 | 3brtr4d | ⊢ ( 𝜑 → ( exp ‘ 𝐴 ) ≤ ( 1 / ( 1 − 𝐴 ) ) ) |