This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit points of a function can be defined using filter bases. (Contributed by Jeff Hankins, 9-Nov-2009) (Revised by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | flffbas.l | ⊢ 𝐿 = ( 𝑌 filGen 𝐵 ) | |
| Assertion | flffbas | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐵 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flffbas.l | ⊢ 𝐿 = ( 𝑌 filGen 𝐵 ) | |
| 2 | fgcl | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → ( 𝑌 filGen 𝐵 ) ∈ ( Fil ‘ 𝑌 ) ) | |
| 3 | 1 2 | eqeltrid | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → 𝐿 ∈ ( Fil ‘ 𝑌 ) ) |
| 4 | isflf | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∃ 𝑡 ∈ 𝐿 ( 𝐹 “ 𝑡 ) ⊆ 𝑜 ) ) ) ) | |
| 5 | 3 4 | syl3an2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∃ 𝑡 ∈ 𝐿 ( 𝐹 “ 𝑡 ) ⊆ 𝑜 ) ) ) ) |
| 6 | 1 | eleq2i | ⊢ ( 𝑡 ∈ 𝐿 ↔ 𝑡 ∈ ( 𝑌 filGen 𝐵 ) ) |
| 7 | elfg | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → ( 𝑡 ∈ ( 𝑌 filGen 𝐵 ) ↔ ( 𝑡 ⊆ 𝑌 ∧ ∃ 𝑠 ∈ 𝐵 𝑠 ⊆ 𝑡 ) ) ) | |
| 8 | 7 | 3ad2ant2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑡 ∈ ( 𝑌 filGen 𝐵 ) ↔ ( 𝑡 ⊆ 𝑌 ∧ ∃ 𝑠 ∈ 𝐵 𝑠 ⊆ 𝑡 ) ) ) |
| 9 | sstr2 | ⊢ ( ( 𝐹 “ 𝑠 ) ⊆ ( 𝐹 “ 𝑡 ) → ( ( 𝐹 “ 𝑡 ) ⊆ 𝑜 → ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) | |
| 10 | imass2 | ⊢ ( 𝑠 ⊆ 𝑡 → ( 𝐹 “ 𝑠 ) ⊆ ( 𝐹 “ 𝑡 ) ) | |
| 11 | 9 10 | syl11 | ⊢ ( ( 𝐹 “ 𝑡 ) ⊆ 𝑜 → ( 𝑠 ⊆ 𝑡 → ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) |
| 12 | 11 | adantl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝐹 “ 𝑡 ) ⊆ 𝑜 ) → ( 𝑠 ⊆ 𝑡 → ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) |
| 13 | 12 | reximdv | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝐹 “ 𝑡 ) ⊆ 𝑜 ) → ( ∃ 𝑠 ∈ 𝐵 𝑠 ⊆ 𝑡 → ∃ 𝑠 ∈ 𝐵 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) |
| 14 | 13 | ex | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝐹 “ 𝑡 ) ⊆ 𝑜 → ( ∃ 𝑠 ∈ 𝐵 𝑠 ⊆ 𝑡 → ∃ 𝑠 ∈ 𝐵 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) |
| 15 | 14 | com23 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ∃ 𝑠 ∈ 𝐵 𝑠 ⊆ 𝑡 → ( ( 𝐹 “ 𝑡 ) ⊆ 𝑜 → ∃ 𝑠 ∈ 𝐵 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) |
| 16 | 15 | adantld | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝑡 ⊆ 𝑌 ∧ ∃ 𝑠 ∈ 𝐵 𝑠 ⊆ 𝑡 ) → ( ( 𝐹 “ 𝑡 ) ⊆ 𝑜 → ∃ 𝑠 ∈ 𝐵 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) |
| 17 | 8 16 | sylbid | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑡 ∈ ( 𝑌 filGen 𝐵 ) → ( ( 𝐹 “ 𝑡 ) ⊆ 𝑜 → ∃ 𝑠 ∈ 𝐵 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) |
| 18 | 17 | adantr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝑡 ∈ ( 𝑌 filGen 𝐵 ) → ( ( 𝐹 “ 𝑡 ) ⊆ 𝑜 → ∃ 𝑠 ∈ 𝐵 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) |
| 19 | 6 18 | biimtrid | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝑡 ∈ 𝐿 → ( ( 𝐹 “ 𝑡 ) ⊆ 𝑜 → ∃ 𝑠 ∈ 𝐵 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) |
| 20 | 19 | rexlimdv | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ∃ 𝑡 ∈ 𝐿 ( 𝐹 “ 𝑡 ) ⊆ 𝑜 → ∃ 𝑠 ∈ 𝐵 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) |
| 21 | ssfg | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → 𝐵 ⊆ ( 𝑌 filGen 𝐵 ) ) | |
| 22 | 21 1 | sseqtrrdi | ⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → 𝐵 ⊆ 𝐿 ) |
| 23 | 22 | sselda | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑠 ∈ 𝐵 ) → 𝑠 ∈ 𝐿 ) |
| 24 | 23 | 3ad2antl2 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑠 ∈ 𝐵 ) → 𝑠 ∈ 𝐿 ) |
| 25 | 24 | ad2ant2r | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑠 ∈ 𝐵 ∧ ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) → 𝑠 ∈ 𝐿 ) |
| 26 | simprr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑠 ∈ 𝐵 ∧ ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) → ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) | |
| 27 | imaeq2 | ⊢ ( 𝑡 = 𝑠 → ( 𝐹 “ 𝑡 ) = ( 𝐹 “ 𝑠 ) ) | |
| 28 | 27 | sseq1d | ⊢ ( 𝑡 = 𝑠 → ( ( 𝐹 “ 𝑡 ) ⊆ 𝑜 ↔ ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) |
| 29 | 28 | rspcev | ⊢ ( ( 𝑠 ∈ 𝐿 ∧ ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) → ∃ 𝑡 ∈ 𝐿 ( 𝐹 “ 𝑡 ) ⊆ 𝑜 ) |
| 30 | 25 26 29 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑠 ∈ 𝐵 ∧ ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) → ∃ 𝑡 ∈ 𝐿 ( 𝐹 “ 𝑡 ) ⊆ 𝑜 ) |
| 31 | 30 | rexlimdvaa | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ∃ 𝑠 ∈ 𝐵 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 → ∃ 𝑡 ∈ 𝐿 ( 𝐹 “ 𝑡 ) ⊆ 𝑜 ) ) |
| 32 | 20 31 | impbid | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ∃ 𝑡 ∈ 𝐿 ( 𝐹 “ 𝑡 ) ⊆ 𝑜 ↔ ∃ 𝑠 ∈ 𝐵 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) |
| 33 | 32 | imbi2d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐴 ∈ 𝑜 → ∃ 𝑡 ∈ 𝐿 ( 𝐹 “ 𝑡 ) ⊆ 𝑜 ) ↔ ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐵 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) |
| 34 | 33 | ralbidv | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∃ 𝑡 ∈ 𝐿 ( 𝐹 “ 𝑡 ) ⊆ 𝑜 ) ↔ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐵 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) |
| 35 | 34 | pm5.32da | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∃ 𝑡 ∈ 𝐿 ( 𝐹 “ 𝑡 ) ⊆ 𝑜 ) ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐵 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) ) |
| 36 | 5 35 | bitrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → ∃ 𝑠 ∈ 𝐵 ( 𝐹 “ 𝑠 ) ⊆ 𝑜 ) ) ) ) |