This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential of a real number is greater than 0. (Contributed by Paul Chapman, 21-Aug-2007) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efgt0 | ⊢ ( 𝐴 ∈ ℝ → 0 < ( exp ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reefcl | ⊢ ( 𝐴 ∈ ℝ → ( exp ‘ 𝐴 ) ∈ ℝ ) | |
| 2 | rehalfcl | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 / 2 ) ∈ ℝ ) | |
| 3 | 2 | reefcld | ⊢ ( 𝐴 ∈ ℝ → ( exp ‘ ( 𝐴 / 2 ) ) ∈ ℝ ) |
| 4 | 3 | sqge0d | ⊢ ( 𝐴 ∈ ℝ → 0 ≤ ( ( exp ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) |
| 5 | 2 | recnd | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 / 2 ) ∈ ℂ ) |
| 6 | 2z | ⊢ 2 ∈ ℤ | |
| 7 | efexp | ⊢ ( ( ( 𝐴 / 2 ) ∈ ℂ ∧ 2 ∈ ℤ ) → ( exp ‘ ( 2 · ( 𝐴 / 2 ) ) ) = ( ( exp ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) | |
| 8 | 5 6 7 | sylancl | ⊢ ( 𝐴 ∈ ℝ → ( exp ‘ ( 2 · ( 𝐴 / 2 ) ) ) = ( ( exp ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) |
| 9 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 10 | 2cn | ⊢ 2 ∈ ℂ | |
| 11 | 2ne0 | ⊢ 2 ≠ 0 | |
| 12 | divcan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( 2 · ( 𝐴 / 2 ) ) = 𝐴 ) | |
| 13 | 10 11 12 | mp3an23 | ⊢ ( 𝐴 ∈ ℂ → ( 2 · ( 𝐴 / 2 ) ) = 𝐴 ) |
| 14 | 9 13 | syl | ⊢ ( 𝐴 ∈ ℝ → ( 2 · ( 𝐴 / 2 ) ) = 𝐴 ) |
| 15 | 14 | fveq2d | ⊢ ( 𝐴 ∈ ℝ → ( exp ‘ ( 2 · ( 𝐴 / 2 ) ) ) = ( exp ‘ 𝐴 ) ) |
| 16 | 8 15 | eqtr3d | ⊢ ( 𝐴 ∈ ℝ → ( ( exp ‘ ( 𝐴 / 2 ) ) ↑ 2 ) = ( exp ‘ 𝐴 ) ) |
| 17 | 4 16 | breqtrd | ⊢ ( 𝐴 ∈ ℝ → 0 ≤ ( exp ‘ 𝐴 ) ) |
| 18 | efne0 | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) ≠ 0 ) | |
| 19 | 9 18 | syl | ⊢ ( 𝐴 ∈ ℝ → ( exp ‘ 𝐴 ) ≠ 0 ) |
| 20 | 1 17 19 | ne0gt0d | ⊢ ( 𝐴 ∈ ℝ → 0 < ( exp ‘ 𝐴 ) ) |