This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: De Moivre's Formula. Proof by induction given at http://en.wikipedia.org/wiki/De_Moivre's_formula , but restricted to nonnegative integer powers. See also demoivreALT for an alternate longer proof not using the exponential function. (Contributed by NM, 24-Jul-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | demoivre | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ) → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑁 ) = ( ( cos ‘ ( 𝑁 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑁 · 𝐴 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | ⊢ i ∈ ℂ | |
| 2 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) ∈ ℂ ) |
| 4 | efexp | ⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ 𝑁 ∈ ℤ ) → ( exp ‘ ( 𝑁 · ( i · 𝐴 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) ↑ 𝑁 ) ) | |
| 5 | 3 4 | sylan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ) → ( exp ‘ ( 𝑁 · ( i · 𝐴 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) ↑ 𝑁 ) ) |
| 6 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 7 | mul12 | ⊢ ( ( 𝑁 ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝑁 · ( i · 𝐴 ) ) = ( i · ( 𝑁 · 𝐴 ) ) ) | |
| 8 | 1 7 | mp3an2 | ⊢ ( ( 𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝑁 · ( i · 𝐴 ) ) = ( i · ( 𝑁 · 𝐴 ) ) ) |
| 9 | 8 | fveq2d | ⊢ ( ( 𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( exp ‘ ( 𝑁 · ( i · 𝐴 ) ) ) = ( exp ‘ ( i · ( 𝑁 · 𝐴 ) ) ) ) |
| 10 | mulcl | ⊢ ( ( 𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝑁 · 𝐴 ) ∈ ℂ ) | |
| 11 | efival | ⊢ ( ( 𝑁 · 𝐴 ) ∈ ℂ → ( exp ‘ ( i · ( 𝑁 · 𝐴 ) ) ) = ( ( cos ‘ ( 𝑁 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑁 · 𝐴 ) ) ) ) ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( exp ‘ ( i · ( 𝑁 · 𝐴 ) ) ) = ( ( cos ‘ ( 𝑁 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑁 · 𝐴 ) ) ) ) ) |
| 13 | 9 12 | eqtrd | ⊢ ( ( 𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( exp ‘ ( 𝑁 · ( i · 𝐴 ) ) ) = ( ( cos ‘ ( 𝑁 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑁 · 𝐴 ) ) ) ) ) |
| 14 | 13 | ancoms | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( exp ‘ ( 𝑁 · ( i · 𝐴 ) ) ) = ( ( cos ‘ ( 𝑁 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑁 · 𝐴 ) ) ) ) ) |
| 15 | 6 14 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ) → ( exp ‘ ( 𝑁 · ( i · 𝐴 ) ) ) = ( ( cos ‘ ( 𝑁 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑁 · 𝐴 ) ) ) ) ) |
| 16 | efival | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) = ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) | |
| 17 | 16 | oveq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · 𝐴 ) ) ↑ 𝑁 ) = ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑁 ) ) |
| 18 | 17 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ) → ( ( exp ‘ ( i · 𝐴 ) ) ↑ 𝑁 ) = ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑁 ) ) |
| 19 | 5 15 18 | 3eqtr3rd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ) → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑁 ) = ( ( cos ‘ ( 𝑁 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑁 · 𝐴 ) ) ) ) ) |