This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The series defining the exponential function converges in the (trivial) case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006) (Revised by Mario Carneiro, 28-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eftval.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| Assertion | ef0lem | ⊢ ( 𝐴 = 0 → seq 0 ( + , 𝐹 ) ⇝ 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eftval.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| 2 | simpr | ⊢ ( ( 𝐴 = 0 ∧ 𝑘 ∈ ( ℤ≥ ‘ 0 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 0 ) ) | |
| 3 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 4 | 2 3 | eleqtrrdi | ⊢ ( ( 𝐴 = 0 ∧ 𝑘 ∈ ( ℤ≥ ‘ 0 ) ) → 𝑘 ∈ ℕ0 ) |
| 5 | elnn0 | ⊢ ( 𝑘 ∈ ℕ0 ↔ ( 𝑘 ∈ ℕ ∨ 𝑘 = 0 ) ) | |
| 6 | 4 5 | sylib | ⊢ ( ( 𝐴 = 0 ∧ 𝑘 ∈ ( ℤ≥ ‘ 0 ) ) → ( 𝑘 ∈ ℕ ∨ 𝑘 = 0 ) ) |
| 7 | nnnn0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝐴 = 0 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ0 ) |
| 9 | 1 | eftval | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝐹 ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 10 | 8 9 | syl | ⊢ ( ( 𝐴 = 0 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 11 | oveq1 | ⊢ ( 𝐴 = 0 → ( 𝐴 ↑ 𝑘 ) = ( 0 ↑ 𝑘 ) ) | |
| 12 | 0exp | ⊢ ( 𝑘 ∈ ℕ → ( 0 ↑ 𝑘 ) = 0 ) | |
| 13 | 11 12 | sylan9eq | ⊢ ( ( 𝐴 = 0 ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ↑ 𝑘 ) = 0 ) |
| 14 | 13 | oveq1d | ⊢ ( ( 𝐴 = 0 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = ( 0 / ( ! ‘ 𝑘 ) ) ) |
| 15 | faccl | ⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℕ ) | |
| 16 | nncn | ⊢ ( ( ! ‘ 𝑘 ) ∈ ℕ → ( ! ‘ 𝑘 ) ∈ ℂ ) | |
| 17 | nnne0 | ⊢ ( ( ! ‘ 𝑘 ) ∈ ℕ → ( ! ‘ 𝑘 ) ≠ 0 ) | |
| 18 | 16 17 | div0d | ⊢ ( ( ! ‘ 𝑘 ) ∈ ℕ → ( 0 / ( ! ‘ 𝑘 ) ) = 0 ) |
| 19 | 8 15 18 | 3syl | ⊢ ( ( 𝐴 = 0 ∧ 𝑘 ∈ ℕ ) → ( 0 / ( ! ‘ 𝑘 ) ) = 0 ) |
| 20 | 10 14 19 | 3eqtrd | ⊢ ( ( 𝐴 = 0 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = 0 ) |
| 21 | nnne0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ≠ 0 ) | |
| 22 | velsn | ⊢ ( 𝑘 ∈ { 0 } ↔ 𝑘 = 0 ) | |
| 23 | 22 | necon3bbii | ⊢ ( ¬ 𝑘 ∈ { 0 } ↔ 𝑘 ≠ 0 ) |
| 24 | 21 23 | sylibr | ⊢ ( 𝑘 ∈ ℕ → ¬ 𝑘 ∈ { 0 } ) |
| 25 | 24 | adantl | ⊢ ( ( 𝐴 = 0 ∧ 𝑘 ∈ ℕ ) → ¬ 𝑘 ∈ { 0 } ) |
| 26 | 25 | iffalsed | ⊢ ( ( 𝐴 = 0 ∧ 𝑘 ∈ ℕ ) → if ( 𝑘 ∈ { 0 } , 1 , 0 ) = 0 ) |
| 27 | 20 26 | eqtr4d | ⊢ ( ( 𝐴 = 0 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ { 0 } , 1 , 0 ) ) |
| 28 | fveq2 | ⊢ ( 𝑘 = 0 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 0 ) ) | |
| 29 | oveq1 | ⊢ ( 𝐴 = 0 → ( 𝐴 ↑ 0 ) = ( 0 ↑ 0 ) ) | |
| 30 | 0exp0e1 | ⊢ ( 0 ↑ 0 ) = 1 | |
| 31 | 29 30 | eqtrdi | ⊢ ( 𝐴 = 0 → ( 𝐴 ↑ 0 ) = 1 ) |
| 32 | 31 | oveq1d | ⊢ ( 𝐴 = 0 → ( ( 𝐴 ↑ 0 ) / ( ! ‘ 0 ) ) = ( 1 / ( ! ‘ 0 ) ) ) |
| 33 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 34 | 1 | eftval | ⊢ ( 0 ∈ ℕ0 → ( 𝐹 ‘ 0 ) = ( ( 𝐴 ↑ 0 ) / ( ! ‘ 0 ) ) ) |
| 35 | 33 34 | ax-mp | ⊢ ( 𝐹 ‘ 0 ) = ( ( 𝐴 ↑ 0 ) / ( ! ‘ 0 ) ) |
| 36 | fac0 | ⊢ ( ! ‘ 0 ) = 1 | |
| 37 | 36 | oveq2i | ⊢ ( 1 / ( ! ‘ 0 ) ) = ( 1 / 1 ) |
| 38 | 1div1e1 | ⊢ ( 1 / 1 ) = 1 | |
| 39 | 37 38 | eqtr2i | ⊢ 1 = ( 1 / ( ! ‘ 0 ) ) |
| 40 | 32 35 39 | 3eqtr4g | ⊢ ( 𝐴 = 0 → ( 𝐹 ‘ 0 ) = 1 ) |
| 41 | 28 40 | sylan9eqr | ⊢ ( ( 𝐴 = 0 ∧ 𝑘 = 0 ) → ( 𝐹 ‘ 𝑘 ) = 1 ) |
| 42 | simpr | ⊢ ( ( 𝐴 = 0 ∧ 𝑘 = 0 ) → 𝑘 = 0 ) | |
| 43 | 42 22 | sylibr | ⊢ ( ( 𝐴 = 0 ∧ 𝑘 = 0 ) → 𝑘 ∈ { 0 } ) |
| 44 | 43 | iftrued | ⊢ ( ( 𝐴 = 0 ∧ 𝑘 = 0 ) → if ( 𝑘 ∈ { 0 } , 1 , 0 ) = 1 ) |
| 45 | 41 44 | eqtr4d | ⊢ ( ( 𝐴 = 0 ∧ 𝑘 = 0 ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ { 0 } , 1 , 0 ) ) |
| 46 | 27 45 | jaodan | ⊢ ( ( 𝐴 = 0 ∧ ( 𝑘 ∈ ℕ ∨ 𝑘 = 0 ) ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ { 0 } , 1 , 0 ) ) |
| 47 | 6 46 | syldan | ⊢ ( ( 𝐴 = 0 ∧ 𝑘 ∈ ( ℤ≥ ‘ 0 ) ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ { 0 } , 1 , 0 ) ) |
| 48 | 33 3 | eleqtri | ⊢ 0 ∈ ( ℤ≥ ‘ 0 ) |
| 49 | 48 | a1i | ⊢ ( 𝐴 = 0 → 0 ∈ ( ℤ≥ ‘ 0 ) ) |
| 50 | 1cnd | ⊢ ( ( 𝐴 = 0 ∧ 𝑘 ∈ { 0 } ) → 1 ∈ ℂ ) | |
| 51 | fz0sn | ⊢ ( 0 ... 0 ) = { 0 } | |
| 52 | 51 | eqimss2i | ⊢ { 0 } ⊆ ( 0 ... 0 ) |
| 53 | 52 | a1i | ⊢ ( 𝐴 = 0 → { 0 } ⊆ ( 0 ... 0 ) ) |
| 54 | 47 49 50 53 | fsumcvg2 | ⊢ ( 𝐴 = 0 → seq 0 ( + , 𝐹 ) ⇝ ( seq 0 ( + , 𝐹 ) ‘ 0 ) ) |
| 55 | 0z | ⊢ 0 ∈ ℤ | |
| 56 | 55 40 | seq1i | ⊢ ( 𝐴 = 0 → ( seq 0 ( + , 𝐹 ) ‘ 0 ) = 1 ) |
| 57 | 54 56 | breqtrd | ⊢ ( 𝐴 = 0 → seq 0 ( + , 𝐹 ) ⇝ 1 ) |