This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For an element of a proper unordered pair of elements of a class V , there is another (different) element of the class V which is an element of the proper pair. (Contributed by AV, 18-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prproe | ⊢ ( ( 𝐶 ∈ { 𝐴 , 𝐵 } ∧ 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpri | ⊢ ( 𝐶 ∈ { 𝐴 , 𝐵 } → ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ) | |
| 2 | eleq1 | ⊢ ( 𝑣 = 𝐵 → ( 𝑣 ∈ { 𝐴 , 𝐵 } ↔ 𝐵 ∈ { 𝐴 , 𝐵 } ) ) | |
| 3 | simprrr | ⊢ ( ( 𝐶 = 𝐴 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → 𝐵 ∈ 𝑉 ) | |
| 4 | necom | ⊢ ( 𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴 ) | |
| 5 | neeq2 | ⊢ ( 𝐴 = 𝐶 → ( 𝐵 ≠ 𝐴 ↔ 𝐵 ≠ 𝐶 ) ) | |
| 6 | 5 | eqcoms | ⊢ ( 𝐶 = 𝐴 → ( 𝐵 ≠ 𝐴 ↔ 𝐵 ≠ 𝐶 ) ) |
| 7 | 6 | biimpcd | ⊢ ( 𝐵 ≠ 𝐴 → ( 𝐶 = 𝐴 → 𝐵 ≠ 𝐶 ) ) |
| 8 | 4 7 | sylbi | ⊢ ( 𝐴 ≠ 𝐵 → ( 𝐶 = 𝐴 → 𝐵 ≠ 𝐶 ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝐶 = 𝐴 → 𝐵 ≠ 𝐶 ) ) |
| 10 | 9 | impcom | ⊢ ( ( 𝐶 = 𝐴 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → 𝐵 ≠ 𝐶 ) |
| 11 | 3 10 | eldifsnd | ⊢ ( ( 𝐶 = 𝐴 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → 𝐵 ∈ ( 𝑉 ∖ { 𝐶 } ) ) |
| 12 | prid2g | ⊢ ( 𝐵 ∈ 𝑉 → 𝐵 ∈ { 𝐴 , 𝐵 } ) | |
| 13 | 12 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ { 𝐴 , 𝐵 } ) |
| 14 | 13 | ad2antll | ⊢ ( ( 𝐶 = 𝐴 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → 𝐵 ∈ { 𝐴 , 𝐵 } ) |
| 15 | 2 11 14 | rspcedvdw | ⊢ ( ( 𝐶 = 𝐴 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) |
| 16 | 15 | ex | ⊢ ( 𝐶 = 𝐴 → ( ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) ) |
| 17 | eleq1 | ⊢ ( 𝑣 = 𝐴 → ( 𝑣 ∈ { 𝐴 , 𝐵 } ↔ 𝐴 ∈ { 𝐴 , 𝐵 } ) ) | |
| 18 | simprrl | ⊢ ( ( 𝐶 = 𝐵 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → 𝐴 ∈ 𝑉 ) | |
| 19 | neeq2 | ⊢ ( 𝐵 = 𝐶 → ( 𝐴 ≠ 𝐵 ↔ 𝐴 ≠ 𝐶 ) ) | |
| 20 | 19 | eqcoms | ⊢ ( 𝐶 = 𝐵 → ( 𝐴 ≠ 𝐵 ↔ 𝐴 ≠ 𝐶 ) ) |
| 21 | 20 | biimpcd | ⊢ ( 𝐴 ≠ 𝐵 → ( 𝐶 = 𝐵 → 𝐴 ≠ 𝐶 ) ) |
| 22 | 21 | adantr | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝐶 = 𝐵 → 𝐴 ≠ 𝐶 ) ) |
| 23 | 22 | impcom | ⊢ ( ( 𝐶 = 𝐵 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → 𝐴 ≠ 𝐶 ) |
| 24 | 18 23 | eldifsnd | ⊢ ( ( 𝐶 = 𝐵 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → 𝐴 ∈ ( 𝑉 ∖ { 𝐶 } ) ) |
| 25 | prid1g | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 , 𝐵 } ) | |
| 26 | 25 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
| 27 | 26 | ad2antll | ⊢ ( ( 𝐶 = 𝐵 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
| 28 | 17 24 27 | rspcedvdw | ⊢ ( ( 𝐶 = 𝐵 ∧ ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) |
| 29 | 28 | ex | ⊢ ( 𝐶 = 𝐵 → ( ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) ) |
| 30 | 16 29 | jaoi | ⊢ ( ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) → ( ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) ) |
| 31 | 1 30 | syl | ⊢ ( 𝐶 ∈ { 𝐴 , 𝐵 } → ( ( 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) ) |
| 32 | 31 | 3impib | ⊢ ( ( 𝐶 ∈ { 𝐴 , 𝐵 } ∧ 𝐴 ≠ 𝐵 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 𝐶 } ) 𝑣 ∈ { 𝐴 , 𝐵 } ) |