This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any nonempty set of dyadic rational intervals has a maximal element. (Contributed by Mario Carneiro, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dyadmbl.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) | |
| Assertion | dyadmax | ⊢ ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) → ∃ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dyadmbl.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) | |
| 2 | ltweuz | ⊢ < We ( ℤ≥ ‘ 0 ) | |
| 3 | 2 | a1i | ⊢ ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) → < We ( ℤ≥ ‘ 0 ) ) |
| 4 | nn0ex | ⊢ ℕ0 ∈ V | |
| 5 | 4 | rabex | ⊢ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ∈ V |
| 6 | 5 | a1i | ⊢ ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) → { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ∈ V ) |
| 7 | ssrab2 | ⊢ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ⊆ ℕ0 | |
| 8 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 9 | 7 8 | sseqtri | ⊢ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ⊆ ( ℤ≥ ‘ 0 ) |
| 10 | 9 | a1i | ⊢ ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) → { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ⊆ ( ℤ≥ ‘ 0 ) ) |
| 11 | id | ⊢ ( 𝐴 ≠ ∅ → 𝐴 ≠ ∅ ) | |
| 12 | 1 | dyadf | ⊢ 𝐹 : ( ℤ × ℕ0 ) ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) |
| 13 | ffn | ⊢ ( 𝐹 : ( ℤ × ℕ0 ) ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝐹 Fn ( ℤ × ℕ0 ) ) | |
| 14 | ovelrn | ⊢ ( 𝐹 Fn ( ℤ × ℕ0 ) → ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑎 ∈ ℤ ∃ 𝑛 ∈ ℕ0 𝑧 = ( 𝑎 𝐹 𝑛 ) ) ) | |
| 15 | 12 13 14 | mp2b | ⊢ ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑎 ∈ ℤ ∃ 𝑛 ∈ ℕ0 𝑧 = ( 𝑎 𝐹 𝑛 ) ) |
| 16 | rexcom | ⊢ ( ∃ 𝑎 ∈ ℤ ∃ 𝑛 ∈ ℕ0 𝑧 = ( 𝑎 𝐹 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) ) | |
| 17 | 15 16 | sylbb | ⊢ ( 𝑧 ∈ ran 𝐹 → ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) ) |
| 18 | 17 | rgen | ⊢ ∀ 𝑧 ∈ ran 𝐹 ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) |
| 19 | ssralv | ⊢ ( 𝐴 ⊆ ran 𝐹 → ( ∀ 𝑧 ∈ ran 𝐹 ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) → ∀ 𝑧 ∈ 𝐴 ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) ) ) | |
| 20 | 18 19 | mpi | ⊢ ( 𝐴 ⊆ ran 𝐹 → ∀ 𝑧 ∈ 𝐴 ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) ) |
| 21 | r19.2z | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) ) → ∃ 𝑧 ∈ 𝐴 ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) ) | |
| 22 | 11 20 21 | syl2anr | ⊢ ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) → ∃ 𝑧 ∈ 𝐴 ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) ) |
| 23 | rexcom | ⊢ ( ∃ 𝑧 ∈ 𝐴 ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) ) | |
| 24 | 22 23 | sylib | ⊢ ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) → ∃ 𝑛 ∈ ℕ0 ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) ) |
| 25 | rabn0 | ⊢ ( { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ≠ ∅ ↔ ∃ 𝑛 ∈ ℕ0 ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) ) | |
| 26 | 24 25 | sylibr | ⊢ ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) → { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ≠ ∅ ) |
| 27 | wereu | ⊢ ( ( < We ( ℤ≥ ‘ 0 ) ∧ ( { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ∈ V ∧ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ⊆ ( ℤ≥ ‘ 0 ) ∧ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ≠ ∅ ) ) → ∃! 𝑐 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ∀ 𝑑 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ¬ 𝑑 < 𝑐 ) | |
| 28 | 3 6 10 26 27 | syl13anc | ⊢ ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) → ∃! 𝑐 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ∀ 𝑑 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ¬ 𝑑 < 𝑐 ) |
| 29 | reurex | ⊢ ( ∃! 𝑐 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ∀ 𝑑 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ¬ 𝑑 < 𝑐 → ∃ 𝑐 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ∀ 𝑑 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ¬ 𝑑 < 𝑐 ) | |
| 30 | 28 29 | syl | ⊢ ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) → ∃ 𝑐 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ∀ 𝑑 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ¬ 𝑑 < 𝑐 ) |
| 31 | oveq2 | ⊢ ( 𝑛 = 𝑐 → ( 𝑎 𝐹 𝑛 ) = ( 𝑎 𝐹 𝑐 ) ) | |
| 32 | 31 | eqeq2d | ⊢ ( 𝑛 = 𝑐 → ( 𝑧 = ( 𝑎 𝐹 𝑛 ) ↔ 𝑧 = ( 𝑎 𝐹 𝑐 ) ) ) |
| 33 | 32 | 2rexbidv | ⊢ ( 𝑛 = 𝑐 → ( ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) ↔ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑐 ) ) ) |
| 34 | 33 | elrab | ⊢ ( 𝑐 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ↔ ( 𝑐 ∈ ℕ0 ∧ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑐 ) ) ) |
| 35 | eqeq1 | ⊢ ( 𝑧 = 𝑤 → ( 𝑧 = ( 𝑎 𝐹 𝑛 ) ↔ 𝑤 = ( 𝑎 𝐹 𝑛 ) ) ) | |
| 36 | oveq1 | ⊢ ( 𝑎 = 𝑏 → ( 𝑎 𝐹 𝑛 ) = ( 𝑏 𝐹 𝑛 ) ) | |
| 37 | 36 | eqeq2d | ⊢ ( 𝑎 = 𝑏 → ( 𝑤 = ( 𝑎 𝐹 𝑛 ) ↔ 𝑤 = ( 𝑏 𝐹 𝑛 ) ) ) |
| 38 | 35 37 | cbvrex2vw | ⊢ ( ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) ↔ ∃ 𝑤 ∈ 𝐴 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑛 ) ) |
| 39 | oveq2 | ⊢ ( 𝑛 = 𝑑 → ( 𝑏 𝐹 𝑛 ) = ( 𝑏 𝐹 𝑑 ) ) | |
| 40 | 39 | eqeq2d | ⊢ ( 𝑛 = 𝑑 → ( 𝑤 = ( 𝑏 𝐹 𝑛 ) ↔ 𝑤 = ( 𝑏 𝐹 𝑑 ) ) ) |
| 41 | 40 | 2rexbidv | ⊢ ( 𝑛 = 𝑑 → ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑛 ) ↔ ∃ 𝑤 ∈ 𝐴 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) ) ) |
| 42 | 38 41 | bitrid | ⊢ ( 𝑛 = 𝑑 → ( ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) ↔ ∃ 𝑤 ∈ 𝐴 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) ) ) |
| 43 | 42 | ralrab | ⊢ ( ∀ 𝑑 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ¬ 𝑑 < 𝑐 ↔ ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ) |
| 44 | r19.23v | ⊢ ( ∀ 𝑤 ∈ 𝐴 ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ↔ ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ) | |
| 45 | 44 | ralbii | ⊢ ( ∀ 𝑑 ∈ ℕ0 ∀ 𝑤 ∈ 𝐴 ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ↔ ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ) |
| 46 | ralcom | ⊢ ( ∀ 𝑑 ∈ ℕ0 ∀ 𝑤 ∈ 𝐴 ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ) | |
| 47 | 45 46 | bitr3i | ⊢ ( ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ) |
| 48 | simplll | ⊢ ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) → 𝐴 ⊆ ran 𝐹 ) | |
| 49 | 48 | sselda | ⊢ ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) → 𝑤 ∈ ran 𝐹 ) |
| 50 | ovelrn | ⊢ ( 𝐹 Fn ( ℤ × ℕ0 ) → ( 𝑤 ∈ ran 𝐹 ↔ ∃ 𝑏 ∈ ℤ ∃ 𝑑 ∈ ℕ0 𝑤 = ( 𝑏 𝐹 𝑑 ) ) ) | |
| 51 | 12 13 50 | mp2b | ⊢ ( 𝑤 ∈ ran 𝐹 ↔ ∃ 𝑏 ∈ ℤ ∃ 𝑑 ∈ ℕ0 𝑤 = ( 𝑏 𝐹 𝑑 ) ) |
| 52 | 49 51 | sylib | ⊢ ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) → ∃ 𝑏 ∈ ℤ ∃ 𝑑 ∈ ℕ0 𝑤 = ( 𝑏 𝐹 𝑑 ) ) |
| 53 | rexcom | ⊢ ( ∃ 𝑏 ∈ ℤ ∃ 𝑑 ∈ ℕ0 𝑤 = ( 𝑏 𝐹 𝑑 ) ↔ ∃ 𝑑 ∈ ℕ0 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) ) | |
| 54 | r19.29 | ⊢ ( ( ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ∧ ∃ 𝑑 ∈ ℕ0 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) ) → ∃ 𝑑 ∈ ℕ0 ( ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ∧ ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) ) ) | |
| 55 | 54 | expcom | ⊢ ( ∃ 𝑑 ∈ ℕ0 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ( ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) → ∃ 𝑑 ∈ ℕ0 ( ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ∧ ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) ) ) ) |
| 56 | 53 55 | sylbi | ⊢ ( ∃ 𝑏 ∈ ℤ ∃ 𝑑 ∈ ℕ0 𝑤 = ( 𝑏 𝐹 𝑑 ) → ( ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) → ∃ 𝑑 ∈ ℕ0 ( ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ∧ ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) ) ) ) |
| 57 | 52 56 | syl | ⊢ ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) → ( ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) → ∃ 𝑑 ∈ ℕ0 ( ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ∧ ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) ) ) ) |
| 58 | simplrr | ⊢ ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) → 𝑎 ∈ ℤ ) | |
| 59 | 58 | ad2antrr | ⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ¬ 𝑑 < 𝑐 ∧ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) ) → 𝑎 ∈ ℤ ) |
| 60 | simplrr | ⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ¬ 𝑑 < 𝑐 ∧ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) ) → 𝑏 ∈ ℤ ) | |
| 61 | simp-5r | ⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ¬ 𝑑 < 𝑐 ∧ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) ) → 𝑐 ∈ ℕ0 ) | |
| 62 | simplrl | ⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ¬ 𝑑 < 𝑐 ∧ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) ) → 𝑑 ∈ ℕ0 ) | |
| 63 | simprl | ⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ¬ 𝑑 < 𝑐 ∧ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) ) → ¬ 𝑑 < 𝑐 ) | |
| 64 | simprr | ⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ¬ 𝑑 < 𝑐 ∧ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) ) → ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) | |
| 65 | 1 59 60 61 62 63 64 | dyadmaxlem | ⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ¬ 𝑑 < 𝑐 ∧ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) ) → ( 𝑎 = 𝑏 ∧ 𝑐 = 𝑑 ) ) |
| 66 | oveq12 | ⊢ ( ( 𝑎 = 𝑏 ∧ 𝑐 = 𝑑 ) → ( 𝑎 𝐹 𝑐 ) = ( 𝑏 𝐹 𝑑 ) ) | |
| 67 | 65 66 | syl | ⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) ∧ ( ¬ 𝑑 < 𝑐 ∧ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) ) → ( 𝑎 𝐹 𝑐 ) = ( 𝑏 𝐹 𝑑 ) ) |
| 68 | 67 | exp32 | ⊢ ( ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) → ( ¬ 𝑑 < 𝑐 → ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) → ( 𝑎 𝐹 𝑐 ) = ( 𝑏 𝐹 𝑑 ) ) ) ) |
| 69 | fveq2 | ⊢ ( 𝑤 = ( 𝑏 𝐹 𝑑 ) → ( [,] ‘ 𝑤 ) = ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) | |
| 70 | 69 | sseq2d | ⊢ ( 𝑤 = ( 𝑏 𝐹 𝑑 ) → ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ 𝑤 ) ↔ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) ) ) |
| 71 | eqeq2 | ⊢ ( 𝑤 = ( 𝑏 𝐹 𝑑 ) → ( ( 𝑎 𝐹 𝑐 ) = 𝑤 ↔ ( 𝑎 𝐹 𝑐 ) = ( 𝑏 𝐹 𝑑 ) ) ) | |
| 72 | 70 71 | imbi12d | ⊢ ( 𝑤 = ( 𝑏 𝐹 𝑑 ) → ( ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑎 𝐹 𝑐 ) = 𝑤 ) ↔ ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) → ( 𝑎 𝐹 𝑐 ) = ( 𝑏 𝐹 𝑑 ) ) ) ) |
| 73 | 72 | imbi2d | ⊢ ( 𝑤 = ( 𝑏 𝐹 𝑑 ) → ( ( ¬ 𝑑 < 𝑐 → ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑎 𝐹 𝑐 ) = 𝑤 ) ) ↔ ( ¬ 𝑑 < 𝑐 → ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ ( 𝑏 𝐹 𝑑 ) ) → ( 𝑎 𝐹 𝑐 ) = ( 𝑏 𝐹 𝑑 ) ) ) ) ) |
| 74 | 68 73 | syl5ibrcom | ⊢ ( ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ ) ) → ( 𝑤 = ( 𝑏 𝐹 𝑑 ) → ( ¬ 𝑑 < 𝑐 → ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑎 𝐹 𝑐 ) = 𝑤 ) ) ) ) |
| 75 | 74 | anassrs | ⊢ ( ( ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑏 ∈ ℤ ) → ( 𝑤 = ( 𝑏 𝐹 𝑑 ) → ( ¬ 𝑑 < 𝑐 → ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑎 𝐹 𝑐 ) = 𝑤 ) ) ) ) |
| 76 | 75 | rexlimdva | ⊢ ( ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑑 ∈ ℕ0 ) → ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ( ¬ 𝑑 < 𝑐 → ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑎 𝐹 𝑐 ) = 𝑤 ) ) ) ) |
| 77 | 76 | a2d | ⊢ ( ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) → ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑎 𝐹 𝑐 ) = 𝑤 ) ) ) ) |
| 78 | 77 | impd | ⊢ ( ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ∧ ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) ) → ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑎 𝐹 𝑐 ) = 𝑤 ) ) ) |
| 79 | 78 | rexlimdva | ⊢ ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) → ( ∃ 𝑑 ∈ ℕ0 ( ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ∧ ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) ) → ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑎 𝐹 𝑐 ) = 𝑤 ) ) ) |
| 80 | 57 79 | syld | ⊢ ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ 𝑤 ∈ 𝐴 ) → ( ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) → ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑎 𝐹 𝑐 ) = 𝑤 ) ) ) |
| 81 | 80 | ralimdva | ⊢ ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) → ( ∀ 𝑤 ∈ 𝐴 ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) → ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑎 𝐹 𝑐 ) = 𝑤 ) ) ) |
| 82 | 47 81 | biimtrid | ⊢ ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) → ( ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) → ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑎 𝐹 𝑐 ) = 𝑤 ) ) ) |
| 83 | 82 | imp | ⊢ ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) ∧ ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ) → ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑎 𝐹 𝑐 ) = 𝑤 ) ) |
| 84 | 83 | an32s | ⊢ ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) → ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑎 𝐹 𝑐 ) = 𝑤 ) ) |
| 85 | fveq2 | ⊢ ( 𝑧 = ( 𝑎 𝐹 𝑐 ) → ( [,] ‘ 𝑧 ) = ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ) | |
| 86 | 85 | sseq1d | ⊢ ( 𝑧 = ( 𝑎 𝐹 𝑐 ) → ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) ↔ ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ 𝑤 ) ) ) |
| 87 | eqeq1 | ⊢ ( 𝑧 = ( 𝑎 𝐹 𝑐 ) → ( 𝑧 = 𝑤 ↔ ( 𝑎 𝐹 𝑐 ) = 𝑤 ) ) | |
| 88 | 86 87 | imbi12d | ⊢ ( 𝑧 = ( 𝑎 𝐹 𝑐 ) → ( ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ↔ ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑎 𝐹 𝑐 ) = 𝑤 ) ) ) |
| 89 | 88 | ralbidv | ⊢ ( 𝑧 = ( 𝑎 𝐹 𝑐 ) → ( ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ↔ ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ ( 𝑎 𝐹 𝑐 ) ) ⊆ ( [,] ‘ 𝑤 ) → ( 𝑎 𝐹 𝑐 ) = 𝑤 ) ) ) |
| 90 | 84 89 | syl5ibrcom | ⊢ ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ ) ) → ( 𝑧 = ( 𝑎 𝐹 𝑐 ) → ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) |
| 91 | 90 | anassrs | ⊢ ( ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑎 ∈ ℤ ) → ( 𝑧 = ( 𝑎 𝐹 𝑐 ) → ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) |
| 92 | 91 | rexlimdva | ⊢ ( ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑐 ) → ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) |
| 93 | 92 | reximdva | ⊢ ( ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) ∧ ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) ) → ( ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑐 ) → ∃ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) |
| 94 | 93 | ex | ⊢ ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) → ( ∀ 𝑑 ∈ ℕ0 ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑏 ∈ ℤ 𝑤 = ( 𝑏 𝐹 𝑑 ) → ¬ 𝑑 < 𝑐 ) → ( ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑐 ) → ∃ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) ) |
| 95 | 43 94 | biimtrid | ⊢ ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) → ( ∀ 𝑑 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ¬ 𝑑 < 𝑐 → ( ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑐 ) → ∃ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) ) |
| 96 | 95 | com23 | ⊢ ( ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑐 ∈ ℕ0 ) → ( ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑐 ) → ( ∀ 𝑑 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ¬ 𝑑 < 𝑐 → ∃ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) ) |
| 97 | 96 | expimpd | ⊢ ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) → ( ( 𝑐 ∈ ℕ0 ∧ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑐 ) ) → ( ∀ 𝑑 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ¬ 𝑑 < 𝑐 → ∃ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) ) |
| 98 | 34 97 | biimtrid | ⊢ ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) → ( 𝑐 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } → ( ∀ 𝑑 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ¬ 𝑑 < 𝑐 → ∃ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) ) |
| 99 | 98 | rexlimdv | ⊢ ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑐 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ∀ 𝑑 ∈ { 𝑛 ∈ ℕ0 ∣ ∃ 𝑧 ∈ 𝐴 ∃ 𝑎 ∈ ℤ 𝑧 = ( 𝑎 𝐹 𝑛 ) } ¬ 𝑑 < 𝑐 → ∃ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) |
| 100 | 30 99 | mpd | ⊢ ( ( 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅ ) → ∃ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( ( [,] ‘ 𝑧 ) ⊆ ( [,] ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) |