This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any nonempty set of dyadic rational intervals has a maximal element. (Contributed by Mario Carneiro, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dyadmbl.1 | |- F = ( x e. ZZ , y e. NN0 |-> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. ) |
|
| Assertion | dyadmax | |- ( ( A C_ ran F /\ A =/= (/) ) -> E. z e. A A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dyadmbl.1 | |- F = ( x e. ZZ , y e. NN0 |-> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. ) |
|
| 2 | ltweuz | |- < We ( ZZ>= ` 0 ) |
|
| 3 | 2 | a1i | |- ( ( A C_ ran F /\ A =/= (/) ) -> < We ( ZZ>= ` 0 ) ) |
| 4 | nn0ex | |- NN0 e. _V |
|
| 5 | 4 | rabex | |- { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } e. _V |
| 6 | 5 | a1i | |- ( ( A C_ ran F /\ A =/= (/) ) -> { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } e. _V ) |
| 7 | ssrab2 | |- { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } C_ NN0 |
|
| 8 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 9 | 7 8 | sseqtri | |- { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } C_ ( ZZ>= ` 0 ) |
| 10 | 9 | a1i | |- ( ( A C_ ran F /\ A =/= (/) ) -> { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } C_ ( ZZ>= ` 0 ) ) |
| 11 | id | |- ( A =/= (/) -> A =/= (/) ) |
|
| 12 | 1 | dyadf | |- F : ( ZZ X. NN0 ) --> ( <_ i^i ( RR X. RR ) ) |
| 13 | ffn | |- ( F : ( ZZ X. NN0 ) --> ( <_ i^i ( RR X. RR ) ) -> F Fn ( ZZ X. NN0 ) ) |
|
| 14 | ovelrn | |- ( F Fn ( ZZ X. NN0 ) -> ( z e. ran F <-> E. a e. ZZ E. n e. NN0 z = ( a F n ) ) ) |
|
| 15 | 12 13 14 | mp2b | |- ( z e. ran F <-> E. a e. ZZ E. n e. NN0 z = ( a F n ) ) |
| 16 | rexcom | |- ( E. a e. ZZ E. n e. NN0 z = ( a F n ) <-> E. n e. NN0 E. a e. ZZ z = ( a F n ) ) |
|
| 17 | 15 16 | sylbb | |- ( z e. ran F -> E. n e. NN0 E. a e. ZZ z = ( a F n ) ) |
| 18 | 17 | rgen | |- A. z e. ran F E. n e. NN0 E. a e. ZZ z = ( a F n ) |
| 19 | ssralv | |- ( A C_ ran F -> ( A. z e. ran F E. n e. NN0 E. a e. ZZ z = ( a F n ) -> A. z e. A E. n e. NN0 E. a e. ZZ z = ( a F n ) ) ) |
|
| 20 | 18 19 | mpi | |- ( A C_ ran F -> A. z e. A E. n e. NN0 E. a e. ZZ z = ( a F n ) ) |
| 21 | r19.2z | |- ( ( A =/= (/) /\ A. z e. A E. n e. NN0 E. a e. ZZ z = ( a F n ) ) -> E. z e. A E. n e. NN0 E. a e. ZZ z = ( a F n ) ) |
|
| 22 | 11 20 21 | syl2anr | |- ( ( A C_ ran F /\ A =/= (/) ) -> E. z e. A E. n e. NN0 E. a e. ZZ z = ( a F n ) ) |
| 23 | rexcom | |- ( E. z e. A E. n e. NN0 E. a e. ZZ z = ( a F n ) <-> E. n e. NN0 E. z e. A E. a e. ZZ z = ( a F n ) ) |
|
| 24 | 22 23 | sylib | |- ( ( A C_ ran F /\ A =/= (/) ) -> E. n e. NN0 E. z e. A E. a e. ZZ z = ( a F n ) ) |
| 25 | rabn0 | |- ( { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } =/= (/) <-> E. n e. NN0 E. z e. A E. a e. ZZ z = ( a F n ) ) |
|
| 26 | 24 25 | sylibr | |- ( ( A C_ ran F /\ A =/= (/) ) -> { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } =/= (/) ) |
| 27 | wereu | |- ( ( < We ( ZZ>= ` 0 ) /\ ( { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } e. _V /\ { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } C_ ( ZZ>= ` 0 ) /\ { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } =/= (/) ) ) -> E! c e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } A. d e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } -. d < c ) |
|
| 28 | 3 6 10 26 27 | syl13anc | |- ( ( A C_ ran F /\ A =/= (/) ) -> E! c e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } A. d e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } -. d < c ) |
| 29 | reurex | |- ( E! c e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } A. d e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } -. d < c -> E. c e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } A. d e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } -. d < c ) |
|
| 30 | 28 29 | syl | |- ( ( A C_ ran F /\ A =/= (/) ) -> E. c e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } A. d e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } -. d < c ) |
| 31 | oveq2 | |- ( n = c -> ( a F n ) = ( a F c ) ) |
|
| 32 | 31 | eqeq2d | |- ( n = c -> ( z = ( a F n ) <-> z = ( a F c ) ) ) |
| 33 | 32 | 2rexbidv | |- ( n = c -> ( E. z e. A E. a e. ZZ z = ( a F n ) <-> E. z e. A E. a e. ZZ z = ( a F c ) ) ) |
| 34 | 33 | elrab | |- ( c e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } <-> ( c e. NN0 /\ E. z e. A E. a e. ZZ z = ( a F c ) ) ) |
| 35 | eqeq1 | |- ( z = w -> ( z = ( a F n ) <-> w = ( a F n ) ) ) |
|
| 36 | oveq1 | |- ( a = b -> ( a F n ) = ( b F n ) ) |
|
| 37 | 36 | eqeq2d | |- ( a = b -> ( w = ( a F n ) <-> w = ( b F n ) ) ) |
| 38 | 35 37 | cbvrex2vw | |- ( E. z e. A E. a e. ZZ z = ( a F n ) <-> E. w e. A E. b e. ZZ w = ( b F n ) ) |
| 39 | oveq2 | |- ( n = d -> ( b F n ) = ( b F d ) ) |
|
| 40 | 39 | eqeq2d | |- ( n = d -> ( w = ( b F n ) <-> w = ( b F d ) ) ) |
| 41 | 40 | 2rexbidv | |- ( n = d -> ( E. w e. A E. b e. ZZ w = ( b F n ) <-> E. w e. A E. b e. ZZ w = ( b F d ) ) ) |
| 42 | 38 41 | bitrid | |- ( n = d -> ( E. z e. A E. a e. ZZ z = ( a F n ) <-> E. w e. A E. b e. ZZ w = ( b F d ) ) ) |
| 43 | 42 | ralrab | |- ( A. d e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } -. d < c <-> A. d e. NN0 ( E. w e. A E. b e. ZZ w = ( b F d ) -> -. d < c ) ) |
| 44 | r19.23v | |- ( A. w e. A ( E. b e. ZZ w = ( b F d ) -> -. d < c ) <-> ( E. w e. A E. b e. ZZ w = ( b F d ) -> -. d < c ) ) |
|
| 45 | 44 | ralbii | |- ( A. d e. NN0 A. w e. A ( E. b e. ZZ w = ( b F d ) -> -. d < c ) <-> A. d e. NN0 ( E. w e. A E. b e. ZZ w = ( b F d ) -> -. d < c ) ) |
| 46 | ralcom | |- ( A. d e. NN0 A. w e. A ( E. b e. ZZ w = ( b F d ) -> -. d < c ) <-> A. w e. A A. d e. NN0 ( E. b e. ZZ w = ( b F d ) -> -. d < c ) ) |
|
| 47 | 45 46 | bitr3i | |- ( A. d e. NN0 ( E. w e. A E. b e. ZZ w = ( b F d ) -> -. d < c ) <-> A. w e. A A. d e. NN0 ( E. b e. ZZ w = ( b F d ) -> -. d < c ) ) |
| 48 | simplll | |- ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) -> A C_ ran F ) |
|
| 49 | 48 | sselda | |- ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) -> w e. ran F ) |
| 50 | ovelrn | |- ( F Fn ( ZZ X. NN0 ) -> ( w e. ran F <-> E. b e. ZZ E. d e. NN0 w = ( b F d ) ) ) |
|
| 51 | 12 13 50 | mp2b | |- ( w e. ran F <-> E. b e. ZZ E. d e. NN0 w = ( b F d ) ) |
| 52 | 49 51 | sylib | |- ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) -> E. b e. ZZ E. d e. NN0 w = ( b F d ) ) |
| 53 | rexcom | |- ( E. b e. ZZ E. d e. NN0 w = ( b F d ) <-> E. d e. NN0 E. b e. ZZ w = ( b F d ) ) |
|
| 54 | r19.29 | |- ( ( A. d e. NN0 ( E. b e. ZZ w = ( b F d ) -> -. d < c ) /\ E. d e. NN0 E. b e. ZZ w = ( b F d ) ) -> E. d e. NN0 ( ( E. b e. ZZ w = ( b F d ) -> -. d < c ) /\ E. b e. ZZ w = ( b F d ) ) ) |
|
| 55 | 54 | expcom | |- ( E. d e. NN0 E. b e. ZZ w = ( b F d ) -> ( A. d e. NN0 ( E. b e. ZZ w = ( b F d ) -> -. d < c ) -> E. d e. NN0 ( ( E. b e. ZZ w = ( b F d ) -> -. d < c ) /\ E. b e. ZZ w = ( b F d ) ) ) ) |
| 56 | 53 55 | sylbi | |- ( E. b e. ZZ E. d e. NN0 w = ( b F d ) -> ( A. d e. NN0 ( E. b e. ZZ w = ( b F d ) -> -. d < c ) -> E. d e. NN0 ( ( E. b e. ZZ w = ( b F d ) -> -. d < c ) /\ E. b e. ZZ w = ( b F d ) ) ) ) |
| 57 | 52 56 | syl | |- ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) -> ( A. d e. NN0 ( E. b e. ZZ w = ( b F d ) -> -. d < c ) -> E. d e. NN0 ( ( E. b e. ZZ w = ( b F d ) -> -. d < c ) /\ E. b e. ZZ w = ( b F d ) ) ) ) |
| 58 | simplrr | |- ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) -> a e. ZZ ) |
|
| 59 | 58 | ad2antrr | |- ( ( ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) /\ ( d e. NN0 /\ b e. ZZ ) ) /\ ( -. d < c /\ ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) ) ) -> a e. ZZ ) |
| 60 | simplrr | |- ( ( ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) /\ ( d e. NN0 /\ b e. ZZ ) ) /\ ( -. d < c /\ ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) ) ) -> b e. ZZ ) |
|
| 61 | simp-5r | |- ( ( ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) /\ ( d e. NN0 /\ b e. ZZ ) ) /\ ( -. d < c /\ ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) ) ) -> c e. NN0 ) |
|
| 62 | simplrl | |- ( ( ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) /\ ( d e. NN0 /\ b e. ZZ ) ) /\ ( -. d < c /\ ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) ) ) -> d e. NN0 ) |
|
| 63 | simprl | |- ( ( ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) /\ ( d e. NN0 /\ b e. ZZ ) ) /\ ( -. d < c /\ ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) ) ) -> -. d < c ) |
|
| 64 | simprr | |- ( ( ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) /\ ( d e. NN0 /\ b e. ZZ ) ) /\ ( -. d < c /\ ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) ) ) -> ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) ) |
|
| 65 | 1 59 60 61 62 63 64 | dyadmaxlem | |- ( ( ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) /\ ( d e. NN0 /\ b e. ZZ ) ) /\ ( -. d < c /\ ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) ) ) -> ( a = b /\ c = d ) ) |
| 66 | oveq12 | |- ( ( a = b /\ c = d ) -> ( a F c ) = ( b F d ) ) |
|
| 67 | 65 66 | syl | |- ( ( ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) /\ ( d e. NN0 /\ b e. ZZ ) ) /\ ( -. d < c /\ ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) ) ) -> ( a F c ) = ( b F d ) ) |
| 68 | 67 | exp32 | |- ( ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) /\ ( d e. NN0 /\ b e. ZZ ) ) -> ( -. d < c -> ( ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) -> ( a F c ) = ( b F d ) ) ) ) |
| 69 | fveq2 | |- ( w = ( b F d ) -> ( [,] ` w ) = ( [,] ` ( b F d ) ) ) |
|
| 70 | 69 | sseq2d | |- ( w = ( b F d ) -> ( ( [,] ` ( a F c ) ) C_ ( [,] ` w ) <-> ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) ) ) |
| 71 | eqeq2 | |- ( w = ( b F d ) -> ( ( a F c ) = w <-> ( a F c ) = ( b F d ) ) ) |
|
| 72 | 70 71 | imbi12d | |- ( w = ( b F d ) -> ( ( ( [,] ` ( a F c ) ) C_ ( [,] ` w ) -> ( a F c ) = w ) <-> ( ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) -> ( a F c ) = ( b F d ) ) ) ) |
| 73 | 72 | imbi2d | |- ( w = ( b F d ) -> ( ( -. d < c -> ( ( [,] ` ( a F c ) ) C_ ( [,] ` w ) -> ( a F c ) = w ) ) <-> ( -. d < c -> ( ( [,] ` ( a F c ) ) C_ ( [,] ` ( b F d ) ) -> ( a F c ) = ( b F d ) ) ) ) ) |
| 74 | 68 73 | syl5ibrcom | |- ( ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) /\ ( d e. NN0 /\ b e. ZZ ) ) -> ( w = ( b F d ) -> ( -. d < c -> ( ( [,] ` ( a F c ) ) C_ ( [,] ` w ) -> ( a F c ) = w ) ) ) ) |
| 75 | 74 | anassrs | |- ( ( ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) /\ d e. NN0 ) /\ b e. ZZ ) -> ( w = ( b F d ) -> ( -. d < c -> ( ( [,] ` ( a F c ) ) C_ ( [,] ` w ) -> ( a F c ) = w ) ) ) ) |
| 76 | 75 | rexlimdva | |- ( ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) /\ d e. NN0 ) -> ( E. b e. ZZ w = ( b F d ) -> ( -. d < c -> ( ( [,] ` ( a F c ) ) C_ ( [,] ` w ) -> ( a F c ) = w ) ) ) ) |
| 77 | 76 | a2d | |- ( ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) /\ d e. NN0 ) -> ( ( E. b e. ZZ w = ( b F d ) -> -. d < c ) -> ( E. b e. ZZ w = ( b F d ) -> ( ( [,] ` ( a F c ) ) C_ ( [,] ` w ) -> ( a F c ) = w ) ) ) ) |
| 78 | 77 | impd | |- ( ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) /\ d e. NN0 ) -> ( ( ( E. b e. ZZ w = ( b F d ) -> -. d < c ) /\ E. b e. ZZ w = ( b F d ) ) -> ( ( [,] ` ( a F c ) ) C_ ( [,] ` w ) -> ( a F c ) = w ) ) ) |
| 79 | 78 | rexlimdva | |- ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) -> ( E. d e. NN0 ( ( E. b e. ZZ w = ( b F d ) -> -. d < c ) /\ E. b e. ZZ w = ( b F d ) ) -> ( ( [,] ` ( a F c ) ) C_ ( [,] ` w ) -> ( a F c ) = w ) ) ) |
| 80 | 57 79 | syld | |- ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ w e. A ) -> ( A. d e. NN0 ( E. b e. ZZ w = ( b F d ) -> -. d < c ) -> ( ( [,] ` ( a F c ) ) C_ ( [,] ` w ) -> ( a F c ) = w ) ) ) |
| 81 | 80 | ralimdva | |- ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) -> ( A. w e. A A. d e. NN0 ( E. b e. ZZ w = ( b F d ) -> -. d < c ) -> A. w e. A ( ( [,] ` ( a F c ) ) C_ ( [,] ` w ) -> ( a F c ) = w ) ) ) |
| 82 | 47 81 | biimtrid | |- ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) -> ( A. d e. NN0 ( E. w e. A E. b e. ZZ w = ( b F d ) -> -. d < c ) -> A. w e. A ( ( [,] ` ( a F c ) ) C_ ( [,] ` w ) -> ( a F c ) = w ) ) ) |
| 83 | 82 | imp | |- ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ ( z e. A /\ a e. ZZ ) ) /\ A. d e. NN0 ( E. w e. A E. b e. ZZ w = ( b F d ) -> -. d < c ) ) -> A. w e. A ( ( [,] ` ( a F c ) ) C_ ( [,] ` w ) -> ( a F c ) = w ) ) |
| 84 | 83 | an32s | |- ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ A. d e. NN0 ( E. w e. A E. b e. ZZ w = ( b F d ) -> -. d < c ) ) /\ ( z e. A /\ a e. ZZ ) ) -> A. w e. A ( ( [,] ` ( a F c ) ) C_ ( [,] ` w ) -> ( a F c ) = w ) ) |
| 85 | fveq2 | |- ( z = ( a F c ) -> ( [,] ` z ) = ( [,] ` ( a F c ) ) ) |
|
| 86 | 85 | sseq1d | |- ( z = ( a F c ) -> ( ( [,] ` z ) C_ ( [,] ` w ) <-> ( [,] ` ( a F c ) ) C_ ( [,] ` w ) ) ) |
| 87 | eqeq1 | |- ( z = ( a F c ) -> ( z = w <-> ( a F c ) = w ) ) |
|
| 88 | 86 87 | imbi12d | |- ( z = ( a F c ) -> ( ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) <-> ( ( [,] ` ( a F c ) ) C_ ( [,] ` w ) -> ( a F c ) = w ) ) ) |
| 89 | 88 | ralbidv | |- ( z = ( a F c ) -> ( A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) <-> A. w e. A ( ( [,] ` ( a F c ) ) C_ ( [,] ` w ) -> ( a F c ) = w ) ) ) |
| 90 | 84 89 | syl5ibrcom | |- ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ A. d e. NN0 ( E. w e. A E. b e. ZZ w = ( b F d ) -> -. d < c ) ) /\ ( z e. A /\ a e. ZZ ) ) -> ( z = ( a F c ) -> A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) ) ) |
| 91 | 90 | anassrs | |- ( ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ A. d e. NN0 ( E. w e. A E. b e. ZZ w = ( b F d ) -> -. d < c ) ) /\ z e. A ) /\ a e. ZZ ) -> ( z = ( a F c ) -> A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) ) ) |
| 92 | 91 | rexlimdva | |- ( ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ A. d e. NN0 ( E. w e. A E. b e. ZZ w = ( b F d ) -> -. d < c ) ) /\ z e. A ) -> ( E. a e. ZZ z = ( a F c ) -> A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) ) ) |
| 93 | 92 | reximdva | |- ( ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) /\ A. d e. NN0 ( E. w e. A E. b e. ZZ w = ( b F d ) -> -. d < c ) ) -> ( E. z e. A E. a e. ZZ z = ( a F c ) -> E. z e. A A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) ) ) |
| 94 | 93 | ex | |- ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) -> ( A. d e. NN0 ( E. w e. A E. b e. ZZ w = ( b F d ) -> -. d < c ) -> ( E. z e. A E. a e. ZZ z = ( a F c ) -> E. z e. A A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) ) ) ) |
| 95 | 43 94 | biimtrid | |- ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) -> ( A. d e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } -. d < c -> ( E. z e. A E. a e. ZZ z = ( a F c ) -> E. z e. A A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) ) ) ) |
| 96 | 95 | com23 | |- ( ( ( A C_ ran F /\ A =/= (/) ) /\ c e. NN0 ) -> ( E. z e. A E. a e. ZZ z = ( a F c ) -> ( A. d e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } -. d < c -> E. z e. A A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) ) ) ) |
| 97 | 96 | expimpd | |- ( ( A C_ ran F /\ A =/= (/) ) -> ( ( c e. NN0 /\ E. z e. A E. a e. ZZ z = ( a F c ) ) -> ( A. d e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } -. d < c -> E. z e. A A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) ) ) ) |
| 98 | 34 97 | biimtrid | |- ( ( A C_ ran F /\ A =/= (/) ) -> ( c e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } -> ( A. d e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } -. d < c -> E. z e. A A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) ) ) ) |
| 99 | 98 | rexlimdv | |- ( ( A C_ ran F /\ A =/= (/) ) -> ( E. c e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } A. d e. { n e. NN0 | E. z e. A E. a e. ZZ z = ( a F n ) } -. d < c -> E. z e. A A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) ) ) |
| 100 | 30 99 | mpd | |- ( ( A C_ ran F /\ A =/= (/) ) -> E. z e. A A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) ) |