This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty subset of an R -well-ordered class has a unique R -minimal element. (Contributed by NM, 18-Mar-1997) (Revised by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wereu | ⊢ ( ( 𝑅 We 𝐴 ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ) → ∃! 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wefr | ⊢ ( 𝑅 We 𝐴 → 𝑅 Fr 𝐴 ) | |
| 2 | fri | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝑅 Fr 𝐴 ) ∧ ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ) → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) | |
| 3 | 2 | exp32 | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑅 Fr 𝐴 ) → ( 𝐵 ⊆ 𝐴 → ( 𝐵 ≠ ∅ → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) ) ) |
| 4 | 3 | expcom | ⊢ ( 𝑅 Fr 𝐴 → ( 𝐵 ∈ 𝑉 → ( 𝐵 ⊆ 𝐴 → ( 𝐵 ≠ ∅ → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) ) ) ) |
| 5 | 4 | 3imp2 | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ) → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) |
| 6 | 1 5 | sylan | ⊢ ( ( 𝑅 We 𝐴 ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ) → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) |
| 7 | weso | ⊢ ( 𝑅 We 𝐴 → 𝑅 Or 𝐴 ) | |
| 8 | soss | ⊢ ( 𝐵 ⊆ 𝐴 → ( 𝑅 Or 𝐴 → 𝑅 Or 𝐵 ) ) | |
| 9 | 7 8 | mpan9 | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → 𝑅 Or 𝐵 ) |
| 10 | somo | ⊢ ( 𝑅 Or 𝐵 → ∃* 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) | |
| 11 | 9 10 | syl | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ∃* 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) |
| 12 | 11 | 3ad2antr2 | ⊢ ( ( 𝑅 We 𝐴 ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ) → ∃* 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) |
| 13 | reu5 | ⊢ ( ∃! 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ↔ ( ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∃* 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) ) | |
| 14 | 6 12 13 | sylanbrc | ⊢ ( ( 𝑅 We 𝐴 ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ) → ∃! 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) |