This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dyadmax . (Contributed by Mario Carneiro, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dyadmbl.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) | |
| dyadmax.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) | ||
| dyadmax.3 | ⊢ ( 𝜑 → 𝐵 ∈ ℤ ) | ||
| dyadmax.4 | ⊢ ( 𝜑 → 𝐶 ∈ ℕ0 ) | ||
| dyadmax.5 | ⊢ ( 𝜑 → 𝐷 ∈ ℕ0 ) | ||
| dyadmax.6 | ⊢ ( 𝜑 → ¬ 𝐷 < 𝐶 ) | ||
| dyadmax.7 | ⊢ ( 𝜑 → ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ) | ||
| Assertion | dyadmaxlem | ⊢ ( 𝜑 → ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dyadmbl.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ0 ↦ 〈 ( 𝑥 / ( 2 ↑ 𝑦 ) ) , ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑦 ) ) 〉 ) | |
| 2 | dyadmax.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) | |
| 3 | dyadmax.3 | ⊢ ( 𝜑 → 𝐵 ∈ ℤ ) | |
| 4 | dyadmax.4 | ⊢ ( 𝜑 → 𝐶 ∈ ℕ0 ) | |
| 5 | dyadmax.5 | ⊢ ( 𝜑 → 𝐷 ∈ ℕ0 ) | |
| 6 | dyadmax.6 | ⊢ ( 𝜑 → ¬ 𝐷 < 𝐶 ) | |
| 7 | dyadmax.7 | ⊢ ( 𝜑 → ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) ) | |
| 8 | 1 | dyadval | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐴 𝐹 𝐶 ) = 〈 ( 𝐴 / ( 2 ↑ 𝐶 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) 〉 ) |
| 9 | 2 4 8 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 𝐹 𝐶 ) = 〈 ( 𝐴 / ( 2 ↑ 𝐶 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) 〉 ) |
| 10 | 9 | fveq2d | ⊢ ( 𝜑 → ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) = ( [,] ‘ 〈 ( 𝐴 / ( 2 ↑ 𝐶 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) 〉 ) ) |
| 11 | df-ov | ⊢ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) = ( [,] ‘ 〈 ( 𝐴 / ( 2 ↑ 𝐶 ) ) , ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) 〉 ) | |
| 12 | 10 11 | eqtr4di | ⊢ ( 𝜑 → ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) = ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
| 13 | 1 | dyadss | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) ) → ( ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) → 𝐷 ≤ 𝐶 ) ) |
| 14 | 2 3 4 5 13 | syl22anc | ⊢ ( 𝜑 → ( ( [,] ‘ ( 𝐴 𝐹 𝐶 ) ) ⊆ ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) → 𝐷 ≤ 𝐶 ) ) |
| 15 | 7 14 | mpd | ⊢ ( 𝜑 → 𝐷 ≤ 𝐶 ) |
| 16 | 5 | nn0red | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 17 | 4 | nn0red | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 18 | 16 17 | eqleltd | ⊢ ( 𝜑 → ( 𝐷 = 𝐶 ↔ ( 𝐷 ≤ 𝐶 ∧ ¬ 𝐷 < 𝐶 ) ) ) |
| 19 | 15 6 18 | mpbir2and | ⊢ ( 𝜑 → 𝐷 = 𝐶 ) |
| 20 | 19 | oveq2d | ⊢ ( 𝜑 → ( 𝐵 𝐹 𝐷 ) = ( 𝐵 𝐹 𝐶 ) ) |
| 21 | 1 | dyadval | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐵 𝐹 𝐶 ) = 〈 ( 𝐵 / ( 2 ↑ 𝐶 ) ) , ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) 〉 ) |
| 22 | 3 4 21 | syl2anc | ⊢ ( 𝜑 → ( 𝐵 𝐹 𝐶 ) = 〈 ( 𝐵 / ( 2 ↑ 𝐶 ) ) , ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) 〉 ) |
| 23 | 20 22 | eqtrd | ⊢ ( 𝜑 → ( 𝐵 𝐹 𝐷 ) = 〈 ( 𝐵 / ( 2 ↑ 𝐶 ) ) , ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) 〉 ) |
| 24 | 23 | fveq2d | ⊢ ( 𝜑 → ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) = ( [,] ‘ 〈 ( 𝐵 / ( 2 ↑ 𝐶 ) ) , ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) 〉 ) ) |
| 25 | df-ov | ⊢ ( ( 𝐵 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ) = ( [,] ‘ 〈 ( 𝐵 / ( 2 ↑ 𝐶 ) ) , ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) 〉 ) | |
| 26 | 24 25 | eqtr4di | ⊢ ( 𝜑 → ( [,] ‘ ( 𝐵 𝐹 𝐷 ) ) = ( ( 𝐵 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
| 27 | 7 12 26 | 3sstr3d | ⊢ ( 𝜑 → ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ⊆ ( ( 𝐵 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
| 28 | 2 | zred | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 29 | 2nn | ⊢ 2 ∈ ℕ | |
| 30 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) → ( 2 ↑ 𝐶 ) ∈ ℕ ) | |
| 31 | 29 4 30 | sylancr | ⊢ ( 𝜑 → ( 2 ↑ 𝐶 ) ∈ ℕ ) |
| 32 | 28 31 | nndivred | ⊢ ( 𝜑 → ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ ) |
| 33 | 32 | rexrd | ⊢ ( 𝜑 → ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ) |
| 34 | peano2re | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) ∈ ℝ ) | |
| 35 | 28 34 | syl | ⊢ ( 𝜑 → ( 𝐴 + 1 ) ∈ ℝ ) |
| 36 | 35 31 | nndivred | ⊢ ( 𝜑 → ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ ) |
| 37 | 36 | rexrd | ⊢ ( 𝜑 → ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ) |
| 38 | 28 | lep1d | ⊢ ( 𝜑 → 𝐴 ≤ ( 𝐴 + 1 ) ) |
| 39 | 31 | nnred | ⊢ ( 𝜑 → ( 2 ↑ 𝐶 ) ∈ ℝ ) |
| 40 | 31 | nngt0d | ⊢ ( 𝜑 → 0 < ( 2 ↑ 𝐶 ) ) |
| 41 | lediv1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 + 1 ) ∈ ℝ ∧ ( ( 2 ↑ 𝐶 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝐶 ) ) ) → ( 𝐴 ≤ ( 𝐴 + 1 ) ↔ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) | |
| 42 | 28 35 39 40 41 | syl112anc | ⊢ ( 𝜑 → ( 𝐴 ≤ ( 𝐴 + 1 ) ↔ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
| 43 | 38 42 | mpbid | ⊢ ( 𝜑 → ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) |
| 44 | ubicc2 | ⊢ ( ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ∧ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) → ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) | |
| 45 | 33 37 43 44 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
| 46 | 27 45 | sseldd | ⊢ ( 𝜑 → ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ( ( 𝐵 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
| 47 | 3 | zred | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 48 | 47 31 | nndivred | ⊢ ( 𝜑 → ( 𝐵 / ( 2 ↑ 𝐶 ) ) ∈ ℝ ) |
| 49 | peano2re | ⊢ ( 𝐵 ∈ ℝ → ( 𝐵 + 1 ) ∈ ℝ ) | |
| 50 | 47 49 | syl | ⊢ ( 𝜑 → ( 𝐵 + 1 ) ∈ ℝ ) |
| 51 | 50 31 | nndivred | ⊢ ( 𝜑 → ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ ) |
| 52 | elicc2 | ⊢ ( ( ( 𝐵 / ( 2 ↑ 𝐶 ) ) ∈ ℝ ∧ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ ) → ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ( ( 𝐵 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ↔ ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ ∧ ( 𝐵 / ( 2 ↑ 𝐶 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ≤ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) ) | |
| 53 | 48 51 52 | syl2anc | ⊢ ( 𝜑 → ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ( ( 𝐵 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ↔ ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ ∧ ( 𝐵 / ( 2 ↑ 𝐶 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ≤ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) ) |
| 54 | 46 53 | mpbid | ⊢ ( 𝜑 → ( ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ ∧ ( 𝐵 / ( 2 ↑ 𝐶 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ≤ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
| 55 | 54 | simp3d | ⊢ ( 𝜑 → ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ≤ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ) |
| 56 | lediv1 | ⊢ ( ( ( 𝐴 + 1 ) ∈ ℝ ∧ ( 𝐵 + 1 ) ∈ ℝ ∧ ( ( 2 ↑ 𝐶 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝐶 ) ) ) → ( ( 𝐴 + 1 ) ≤ ( 𝐵 + 1 ) ↔ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ≤ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) | |
| 57 | 35 50 39 40 56 | syl112anc | ⊢ ( 𝜑 → ( ( 𝐴 + 1 ) ≤ ( 𝐵 + 1 ) ↔ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ≤ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
| 58 | 55 57 | mpbird | ⊢ ( 𝜑 → ( 𝐴 + 1 ) ≤ ( 𝐵 + 1 ) ) |
| 59 | 1red | ⊢ ( 𝜑 → 1 ∈ ℝ ) | |
| 60 | 28 47 59 | leadd1d | ⊢ ( 𝜑 → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 + 1 ) ≤ ( 𝐵 + 1 ) ) ) |
| 61 | 58 60 | mpbird | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 62 | lbicc2 | ⊢ ( ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ∧ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ* ∧ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) → ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) | |
| 63 | 33 37 43 62 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐴 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
| 64 | 27 63 | sseldd | ⊢ ( 𝜑 → ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ( ( 𝐵 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
| 65 | elicc2 | ⊢ ( ( ( 𝐵 / ( 2 ↑ 𝐶 ) ) ∈ ℝ ∧ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ∈ ℝ ) → ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ( ( 𝐵 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ↔ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ ∧ ( 𝐵 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∧ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) ) | |
| 66 | 48 51 65 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ( ( 𝐵 / ( 2 ↑ 𝐶 ) ) [,] ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ↔ ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ ∧ ( 𝐵 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∧ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) ) |
| 67 | 64 66 | mpbid | ⊢ ( 𝜑 → ( ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∈ ℝ ∧ ( 𝐵 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ∧ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ≤ ( ( 𝐵 + 1 ) / ( 2 ↑ 𝐶 ) ) ) ) |
| 68 | 67 | simp2d | ⊢ ( 𝜑 → ( 𝐵 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ) |
| 69 | lediv1 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( ( 2 ↑ 𝐶 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝐶 ) ) ) → ( 𝐵 ≤ 𝐴 ↔ ( 𝐵 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ) ) | |
| 70 | 47 28 39 40 69 | syl112anc | ⊢ ( 𝜑 → ( 𝐵 ≤ 𝐴 ↔ ( 𝐵 / ( 2 ↑ 𝐶 ) ) ≤ ( 𝐴 / ( 2 ↑ 𝐶 ) ) ) ) |
| 71 | 68 70 | mpbird | ⊢ ( 𝜑 → 𝐵 ≤ 𝐴 ) |
| 72 | 28 47 | letri3d | ⊢ ( 𝜑 → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) ) ) |
| 73 | 61 71 72 | mpbir2and | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
| 74 | 19 | eqcomd | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) |
| 75 | 73 74 | jca | ⊢ ( 𝜑 → ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) ) |