This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a complex differentiable function to the reals. This version of dvres3 assumes that F is differentiable on its domain, but does not require F to be differentiable on the whole real line. (Contributed by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dvres3a.j | |- J = ( TopOpen ` CCfld ) |
|
| Assertion | dvres3a | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> ( S _D ( F |` S ) ) = ( ( CC _D F ) |` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvres3a.j | |- J = ( TopOpen ` CCfld ) |
|
| 2 | reldv | |- Rel ( S _D ( F |` S ) ) |
|
| 3 | recnprss | |- ( S e. { RR , CC } -> S C_ CC ) |
|
| 4 | 3 | ad2antrr | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> S C_ CC ) |
| 5 | simplr | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> F : A --> CC ) |
|
| 6 | inss2 | |- ( S i^i A ) C_ A |
|
| 7 | fssres | |- ( ( F : A --> CC /\ ( S i^i A ) C_ A ) -> ( F |` ( S i^i A ) ) : ( S i^i A ) --> CC ) |
|
| 8 | 5 6 7 | sylancl | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> ( F |` ( S i^i A ) ) : ( S i^i A ) --> CC ) |
| 9 | rescom | |- ( ( F |` A ) |` S ) = ( ( F |` S ) |` A ) |
|
| 10 | resres | |- ( ( F |` S ) |` A ) = ( F |` ( S i^i A ) ) |
|
| 11 | 9 10 | eqtri | |- ( ( F |` A ) |` S ) = ( F |` ( S i^i A ) ) |
| 12 | ffn | |- ( F : A --> CC -> F Fn A ) |
|
| 13 | fnresdm | |- ( F Fn A -> ( F |` A ) = F ) |
|
| 14 | 5 12 13 | 3syl | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> ( F |` A ) = F ) |
| 15 | 14 | reseq1d | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> ( ( F |` A ) |` S ) = ( F |` S ) ) |
| 16 | 11 15 | eqtr3id | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> ( F |` ( S i^i A ) ) = ( F |` S ) ) |
| 17 | 16 | feq1d | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> ( ( F |` ( S i^i A ) ) : ( S i^i A ) --> CC <-> ( F |` S ) : ( S i^i A ) --> CC ) ) |
| 18 | 8 17 | mpbid | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> ( F |` S ) : ( S i^i A ) --> CC ) |
| 19 | inss1 | |- ( S i^i A ) C_ S |
|
| 20 | 19 | a1i | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> ( S i^i A ) C_ S ) |
| 21 | 4 18 20 | dvbss | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> dom ( S _D ( F |` S ) ) C_ ( S i^i A ) ) |
| 22 | dmres | |- dom ( ( CC _D F ) |` S ) = ( S i^i dom ( CC _D F ) ) |
|
| 23 | simprr | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> dom ( CC _D F ) = A ) |
|
| 24 | 23 | ineq2d | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> ( S i^i dom ( CC _D F ) ) = ( S i^i A ) ) |
| 25 | 22 24 | eqtrid | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> dom ( ( CC _D F ) |` S ) = ( S i^i A ) ) |
| 26 | 21 25 | sseqtrrd | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> dom ( S _D ( F |` S ) ) C_ dom ( ( CC _D F ) |` S ) ) |
| 27 | relssres | |- ( ( Rel ( S _D ( F |` S ) ) /\ dom ( S _D ( F |` S ) ) C_ dom ( ( CC _D F ) |` S ) ) -> ( ( S _D ( F |` S ) ) |` dom ( ( CC _D F ) |` S ) ) = ( S _D ( F |` S ) ) ) |
|
| 28 | 2 26 27 | sylancr | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> ( ( S _D ( F |` S ) ) |` dom ( ( CC _D F ) |` S ) ) = ( S _D ( F |` S ) ) ) |
| 29 | dvfg | |- ( S e. { RR , CC } -> ( S _D ( F |` S ) ) : dom ( S _D ( F |` S ) ) --> CC ) |
|
| 30 | 29 | ad2antrr | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> ( S _D ( F |` S ) ) : dom ( S _D ( F |` S ) ) --> CC ) |
| 31 | 30 | ffund | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> Fun ( S _D ( F |` S ) ) ) |
| 32 | ssidd | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> CC C_ CC ) |
|
| 33 | 1 | cnfldtopon | |- J e. ( TopOn ` CC ) |
| 34 | simprl | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> A e. J ) |
|
| 35 | toponss | |- ( ( J e. ( TopOn ` CC ) /\ A e. J ) -> A C_ CC ) |
|
| 36 | 33 34 35 | sylancr | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> A C_ CC ) |
| 37 | dvres2 | |- ( ( ( CC C_ CC /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ CC ) ) -> ( ( CC _D F ) |` S ) C_ ( S _D ( F |` S ) ) ) |
|
| 38 | 32 5 36 4 37 | syl22anc | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> ( ( CC _D F ) |` S ) C_ ( S _D ( F |` S ) ) ) |
| 39 | funssres | |- ( ( Fun ( S _D ( F |` S ) ) /\ ( ( CC _D F ) |` S ) C_ ( S _D ( F |` S ) ) ) -> ( ( S _D ( F |` S ) ) |` dom ( ( CC _D F ) |` S ) ) = ( ( CC _D F ) |` S ) ) |
|
| 40 | 31 38 39 | syl2anc | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> ( ( S _D ( F |` S ) ) |` dom ( ( CC _D F ) |` S ) ) = ( ( CC _D F ) |` S ) ) |
| 41 | 28 40 | eqtr3d | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A e. J /\ dom ( CC _D F ) = A ) ) -> ( S _D ( F |` S ) ) = ( ( CC _D F ) |` S ) ) |