This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function on a closed interval with nonnegative derivative is weakly increasing. (Contributed by Mario Carneiro, 30-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvgt0.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| dvgt0.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| dvgt0.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | ||
| dvge0.d | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ( 0 [,) +∞ ) ) | ||
| dvge0.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ) | ||
| dvge0.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) | ||
| dvge0.l | ⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) | ||
| Assertion | dvge0 | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvgt0.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | dvgt0.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | dvgt0.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | |
| 4 | dvge0.d | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ( 0 [,) +∞ ) ) | |
| 5 | dvge0.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 6 | dvge0.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 7 | dvge0.l | ⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) | |
| 8 | 1 2 3 4 | dvgt0lem1 | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ∈ ( 0 [,) +∞ ) ) |
| 9 | 8 | exp31 | ⊢ ( 𝜑 → ( ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑌 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑋 < 𝑌 → ( ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ∈ ( 0 [,) +∞ ) ) ) ) |
| 10 | 5 6 9 | mp2and | ⊢ ( 𝜑 → ( 𝑋 < 𝑌 → ( ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ∈ ( 0 [,) +∞ ) ) ) |
| 11 | 10 | imp | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ∈ ( 0 [,) +∞ ) ) |
| 12 | elrege0 | ⊢ ( ( ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ∈ ℝ ∧ 0 ≤ ( ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ) ) | |
| 13 | 12 | simprbi | ⊢ ( ( ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ∈ ( 0 [,) +∞ ) → 0 ≤ ( ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ) |
| 14 | 11 13 | syl | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → 0 ≤ ( ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ) |
| 15 | cncff | ⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | |
| 16 | 3 15 | syl | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 17 | 16 6 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑌 ) ∈ ℝ ) |
| 18 | 16 5 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ℝ ) |
| 19 | 17 18 | resubcld | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) ∈ ℝ ) |
| 20 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) ∈ ℝ ) |
| 21 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 22 | 1 2 21 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 23 | 22 6 | sseldd | ⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 24 | 22 5 | sseldd | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 25 | 23 24 | resubcld | ⊢ ( 𝜑 → ( 𝑌 − 𝑋 ) ∈ ℝ ) |
| 26 | 25 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( 𝑌 − 𝑋 ) ∈ ℝ ) |
| 27 | 24 23 | posdifd | ⊢ ( 𝜑 → ( 𝑋 < 𝑌 ↔ 0 < ( 𝑌 − 𝑋 ) ) ) |
| 28 | 27 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → 0 < ( 𝑌 − 𝑋 ) ) |
| 29 | ge0div | ⊢ ( ( ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) ∈ ℝ ∧ ( 𝑌 − 𝑋 ) ∈ ℝ ∧ 0 < ( 𝑌 − 𝑋 ) ) → ( 0 ≤ ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) ↔ 0 ≤ ( ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ) ) | |
| 30 | 20 26 28 29 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( 0 ≤ ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) ↔ 0 ≤ ( ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) / ( 𝑌 − 𝑋 ) ) ) ) |
| 31 | 14 30 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → 0 ≤ ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) ) |
| 32 | 31 | ex | ⊢ ( 𝜑 → ( 𝑋 < 𝑌 → 0 ≤ ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 33 | 17 18 | subge0d | ⊢ ( 𝜑 → ( 0 ≤ ( ( 𝐹 ‘ 𝑌 ) − ( 𝐹 ‘ 𝑋 ) ) ↔ ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑌 ) ) ) |
| 34 | 32 33 | sylibd | ⊢ ( 𝜑 → ( 𝑋 < 𝑌 → ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑌 ) ) ) |
| 35 | 17 | leidd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑌 ) ≤ ( 𝐹 ‘ 𝑌 ) ) |
| 36 | fveq2 | ⊢ ( 𝑋 = 𝑌 → ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) | |
| 37 | 36 | breq1d | ⊢ ( 𝑋 = 𝑌 → ( ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑌 ) ↔ ( 𝐹 ‘ 𝑌 ) ≤ ( 𝐹 ‘ 𝑌 ) ) ) |
| 38 | 35 37 | syl5ibrcom | ⊢ ( 𝜑 → ( 𝑋 = 𝑌 → ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑌 ) ) ) |
| 39 | 24 23 | leloed | ⊢ ( 𝜑 → ( 𝑋 ≤ 𝑌 ↔ ( 𝑋 < 𝑌 ∨ 𝑋 = 𝑌 ) ) ) |
| 40 | 7 39 | mpbid | ⊢ ( 𝜑 → ( 𝑋 < 𝑌 ∨ 𝑋 = 𝑌 ) ) |
| 41 | 34 38 40 | mpjaod | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑌 ) ) |