This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sum commutation from sum_ n <_ A , sum_ d || n , B ( n , d ) to sum_ d <_ A , sum_ m <_ A / d , B ( n , d m ) . (Contributed by Mario Carneiro, 4-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsflsumcom.1 | ⊢ ( 𝑛 = ( 𝑑 · 𝑚 ) → 𝐵 = 𝐶 ) | |
| dvdsflsumcom.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| dvdsflsumcom.3 | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) ) → 𝐵 ∈ ℂ ) | ||
| Assertion | dvdsflsumcom | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } 𝐵 = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsflsumcom.1 | ⊢ ( 𝑛 = ( 𝑑 · 𝑚 ) → 𝐵 = 𝐶 ) | |
| 2 | dvdsflsumcom.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 3 | dvdsflsumcom.3 | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) ) → 𝐵 ∈ ℂ ) | |
| 4 | fzfid | ⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∈ Fin ) | |
| 5 | fzfid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 ... 𝑛 ) ∈ Fin ) | |
| 6 | elfznn | ⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → 𝑛 ∈ ℕ ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℕ ) |
| 8 | dvdsssfz1 | ⊢ ( 𝑛 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ⊆ ( 1 ... 𝑛 ) ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ⊆ ( 1 ... 𝑛 ) ) |
| 10 | 5 9 | ssfid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ∈ Fin ) |
| 11 | nnre | ⊢ ( 𝑑 ∈ ℕ → 𝑑 ∈ ℝ ) | |
| 12 | 11 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ) → 𝑑 ∈ ℝ ) |
| 13 | 7 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ) → 𝑛 ∈ ℕ ) |
| 14 | 13 | nnred | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ) → 𝑛 ∈ ℝ ) |
| 15 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ) → 𝐴 ∈ ℝ ) |
| 16 | nnz | ⊢ ( 𝑑 ∈ ℕ → 𝑑 ∈ ℤ ) | |
| 17 | dvdsle | ⊢ ( ( 𝑑 ∈ ℤ ∧ 𝑛 ∈ ℕ ) → ( 𝑑 ∥ 𝑛 → 𝑑 ≤ 𝑛 ) ) | |
| 18 | 16 7 17 | syl2anr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑑 ∈ ℕ ) → ( 𝑑 ∥ 𝑛 → 𝑑 ≤ 𝑛 ) ) |
| 19 | 18 | impr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ) → 𝑑 ≤ 𝑛 ) |
| 20 | fznnfl | ⊢ ( 𝐴 ∈ ℝ → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ 𝐴 ) ) ) | |
| 21 | 2 20 | syl | ⊢ ( 𝜑 → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ 𝐴 ) ) ) |
| 22 | 21 | simplbda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ≤ 𝐴 ) |
| 23 | 22 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ) → 𝑛 ≤ 𝐴 ) |
| 24 | 12 14 15 19 23 | letrd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ) → 𝑑 ≤ 𝐴 ) |
| 25 | 24 | ex | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) → 𝑑 ≤ 𝐴 ) ) |
| 26 | 25 | pm4.71rd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ↔ ( 𝑑 ≤ 𝐴 ∧ ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ) ) ) |
| 27 | ancom | ⊢ ( ( 𝑑 ≤ 𝐴 ∧ ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ) ↔ ( ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ∧ 𝑑 ≤ 𝐴 ) ) | |
| 28 | an32 | ⊢ ( ( ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ∧ 𝑑 ≤ 𝐴 ) ↔ ( ( 𝑑 ∈ ℕ ∧ 𝑑 ≤ 𝐴 ) ∧ 𝑑 ∥ 𝑛 ) ) | |
| 29 | 27 28 | bitri | ⊢ ( ( 𝑑 ≤ 𝐴 ∧ ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ) ↔ ( ( 𝑑 ∈ ℕ ∧ 𝑑 ≤ 𝐴 ) ∧ 𝑑 ∥ 𝑛 ) ) |
| 30 | 26 29 | bitrdi | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ↔ ( ( 𝑑 ∈ ℕ ∧ 𝑑 ≤ 𝐴 ) ∧ 𝑑 ∥ 𝑛 ) ) ) |
| 31 | fznnfl | ⊢ ( 𝐴 ∈ ℝ → ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑑 ∈ ℕ ∧ 𝑑 ≤ 𝐴 ) ) ) | |
| 32 | 2 31 | syl | ⊢ ( 𝜑 → ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑑 ∈ ℕ ∧ 𝑑 ≤ 𝐴 ) ) ) |
| 33 | 32 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑑 ∈ ℕ ∧ 𝑑 ≤ 𝐴 ) ) ) |
| 34 | 33 | anbi1d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∥ 𝑛 ) ↔ ( ( 𝑑 ∈ ℕ ∧ 𝑑 ≤ 𝐴 ) ∧ 𝑑 ∥ 𝑛 ) ) ) |
| 35 | 30 34 | bitr4d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ↔ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∥ 𝑛 ) ) ) |
| 36 | 35 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ) ↔ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∥ 𝑛 ) ) ) ) |
| 37 | an12 | ⊢ ( ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∥ 𝑛 ) ) ↔ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∥ 𝑛 ) ) ) | |
| 38 | 36 37 | bitrdi | ⊢ ( 𝜑 → ( ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ) ↔ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∥ 𝑛 ) ) ) ) |
| 39 | breq1 | ⊢ ( 𝑥 = 𝑑 → ( 𝑥 ∥ 𝑛 ↔ 𝑑 ∥ 𝑛 ) ) | |
| 40 | 39 | elrab | ⊢ ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ↔ ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ) |
| 41 | 40 | anbi2i | ⊢ ( ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) ↔ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ) ) |
| 42 | breq2 | ⊢ ( 𝑥 = 𝑛 → ( 𝑑 ∥ 𝑥 ↔ 𝑑 ∥ 𝑛 ) ) | |
| 43 | 42 | elrab | ⊢ ( 𝑛 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑑 ∥ 𝑥 } ↔ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∥ 𝑛 ) ) |
| 44 | 43 | anbi2i | ⊢ ( ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑛 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑑 ∥ 𝑥 } ) ↔ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∥ 𝑛 ) ) ) |
| 45 | 38 41 44 | 3bitr4g | ⊢ ( 𝜑 → ( ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) ↔ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑛 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑑 ∥ 𝑥 } ) ) ) |
| 46 | 4 4 10 45 3 | fsumcom2 | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } 𝐵 = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑛 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑑 ∥ 𝑥 } 𝐵 ) |
| 47 | fzfid | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ∈ Fin ) | |
| 48 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝐴 ∈ ℝ ) |
| 49 | 32 | simprbda | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑑 ∈ ℕ ) |
| 50 | eqid | ⊢ ( 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ↦ ( 𝑑 · 𝑦 ) ) = ( 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ↦ ( 𝑑 · 𝑦 ) ) | |
| 51 | 48 49 50 | dvdsflf1o | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ↦ ( 𝑑 · 𝑦 ) ) : ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) –1-1-onto→ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑑 ∥ 𝑥 } ) |
| 52 | oveq2 | ⊢ ( 𝑦 = 𝑚 → ( 𝑑 · 𝑦 ) = ( 𝑑 · 𝑚 ) ) | |
| 53 | ovex | ⊢ ( 𝑑 · 𝑚 ) ∈ V | |
| 54 | 52 50 53 | fvmpt | ⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) → ( ( 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ↦ ( 𝑑 · 𝑦 ) ) ‘ 𝑚 ) = ( 𝑑 · 𝑚 ) ) |
| 55 | 54 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ↦ ( 𝑑 · 𝑦 ) ) ‘ 𝑚 ) = ( 𝑑 · 𝑚 ) ) |
| 56 | 45 | biimpar | ⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑛 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑑 ∥ 𝑥 } ) ) → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) ) |
| 57 | 56 3 | syldan | ⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑛 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑑 ∥ 𝑥 } ) ) → 𝐵 ∈ ℂ ) |
| 58 | 57 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑛 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑑 ∥ 𝑥 } ) → 𝐵 ∈ ℂ ) |
| 59 | 1 47 51 55 58 | fsumf1o | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → Σ 𝑛 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑑 ∥ 𝑥 } 𝐵 = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) 𝐶 ) |
| 60 | 59 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑛 ∈ { 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∣ 𝑑 ∥ 𝑥 } 𝐵 = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) 𝐶 ) |
| 61 | 46 60 | eqtrd | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } 𝐵 = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) 𝐶 ) |