This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The chain rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 10-Aug-2014) (Revised by Mario Carneiro, 10-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvcof.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| dvcof.t | ⊢ ( 𝜑 → 𝑇 ∈ { ℝ , ℂ } ) | ||
| dvcof.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | ||
| dvcof.g | ⊢ ( 𝜑 → 𝐺 : 𝑌 ⟶ 𝑋 ) | ||
| dvcof.df | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) = 𝑋 ) | ||
| dvcof.dg | ⊢ ( 𝜑 → dom ( 𝑇 D 𝐺 ) = 𝑌 ) | ||
| Assertion | dvcof | ⊢ ( 𝜑 → ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) = ( ( ( 𝑆 D 𝐹 ) ∘ 𝐺 ) ∘f · ( 𝑇 D 𝐺 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvcof.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| 2 | dvcof.t | ⊢ ( 𝜑 → 𝑇 ∈ { ℝ , ℂ } ) | |
| 3 | dvcof.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | |
| 4 | dvcof.g | ⊢ ( 𝜑 → 𝐺 : 𝑌 ⟶ 𝑋 ) | |
| 5 | dvcof.df | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) = 𝑋 ) | |
| 6 | dvcof.dg | ⊢ ( 𝜑 → dom ( 𝑇 D 𝐺 ) = 𝑌 ) | |
| 7 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝐹 : 𝑋 ⟶ ℂ ) |
| 8 | dvbsss | ⊢ dom ( 𝑆 D 𝐹 ) ⊆ 𝑆 | |
| 9 | 5 8 | eqsstrrdi | ⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
| 10 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑋 ⊆ 𝑆 ) |
| 11 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝐺 : 𝑌 ⟶ 𝑋 ) |
| 12 | dvbsss | ⊢ dom ( 𝑇 D 𝐺 ) ⊆ 𝑇 | |
| 13 | 6 12 | eqsstrrdi | ⊢ ( 𝜑 → 𝑌 ⊆ 𝑇 ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑌 ⊆ 𝑇 ) |
| 15 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑆 ∈ { ℝ , ℂ } ) |
| 16 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑇 ∈ { ℝ , ℂ } ) |
| 17 | 4 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝑋 ) |
| 18 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → dom ( 𝑆 D 𝐹 ) = 𝑋 ) |
| 19 | 17 18 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝐺 ‘ 𝑥 ) ∈ dom ( 𝑆 D 𝐹 ) ) |
| 20 | 6 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ dom ( 𝑇 D 𝐺 ) ↔ 𝑥 ∈ 𝑌 ) ) |
| 21 | 20 | biimpar | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ dom ( 𝑇 D 𝐺 ) ) |
| 22 | 7 10 11 14 15 16 19 21 | dvco | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ‘ 𝑥 ) = ( ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝑥 ) ) · ( ( 𝑇 D 𝐺 ) ‘ 𝑥 ) ) ) |
| 23 | 22 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑌 ↦ ( ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑌 ↦ ( ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝑥 ) ) · ( ( 𝑇 D 𝐺 ) ‘ 𝑥 ) ) ) ) |
| 24 | dvfg | ⊢ ( 𝑇 ∈ { ℝ , ℂ } → ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) : dom ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ⟶ ℂ ) | |
| 25 | 2 24 | syl | ⊢ ( 𝜑 → ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) : dom ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ⟶ ℂ ) |
| 26 | recnprss | ⊢ ( 𝑇 ∈ { ℝ , ℂ } → 𝑇 ⊆ ℂ ) | |
| 27 | 2 26 | syl | ⊢ ( 𝜑 → 𝑇 ⊆ ℂ ) |
| 28 | fco | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) → ( 𝐹 ∘ 𝐺 ) : 𝑌 ⟶ ℂ ) | |
| 29 | 3 4 28 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) : 𝑌 ⟶ ℂ ) |
| 30 | 27 29 13 | dvbss | ⊢ ( 𝜑 → dom ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ⊆ 𝑌 ) |
| 31 | recnprss | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) | |
| 32 | 15 31 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑆 ⊆ ℂ ) |
| 33 | 16 26 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑇 ⊆ ℂ ) |
| 34 | dvfg | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) | |
| 35 | ffun | ⊢ ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ → Fun ( 𝑆 D 𝐹 ) ) | |
| 36 | funfvbrb | ⊢ ( Fun ( 𝑆 D 𝐹 ) → ( ( 𝐺 ‘ 𝑥 ) ∈ dom ( 𝑆 D 𝐹 ) ↔ ( 𝐺 ‘ 𝑥 ) ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) | |
| 37 | 15 34 35 36 | 4syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝐺 ‘ 𝑥 ) ∈ dom ( 𝑆 D 𝐹 ) ↔ ( 𝐺 ‘ 𝑥 ) ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 38 | 19 37 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝐺 ‘ 𝑥 ) ( 𝑆 D 𝐹 ) ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) |
| 39 | dvfg | ⊢ ( 𝑇 ∈ { ℝ , ℂ } → ( 𝑇 D 𝐺 ) : dom ( 𝑇 D 𝐺 ) ⟶ ℂ ) | |
| 40 | ffun | ⊢ ( ( 𝑇 D 𝐺 ) : dom ( 𝑇 D 𝐺 ) ⟶ ℂ → Fun ( 𝑇 D 𝐺 ) ) | |
| 41 | funfvbrb | ⊢ ( Fun ( 𝑇 D 𝐺 ) → ( 𝑥 ∈ dom ( 𝑇 D 𝐺 ) ↔ 𝑥 ( 𝑇 D 𝐺 ) ( ( 𝑇 D 𝐺 ) ‘ 𝑥 ) ) ) | |
| 42 | 16 39 40 41 | 4syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝑥 ∈ dom ( 𝑇 D 𝐺 ) ↔ 𝑥 ( 𝑇 D 𝐺 ) ( ( 𝑇 D 𝐺 ) ‘ 𝑥 ) ) ) |
| 43 | 21 42 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ( 𝑇 D 𝐺 ) ( ( 𝑇 D 𝐺 ) ‘ 𝑥 ) ) |
| 44 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 45 | 7 10 11 14 32 33 38 43 44 | dvcobr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ( ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝑥 ) ) · ( ( 𝑇 D 𝐺 ) ‘ 𝑥 ) ) ) |
| 46 | reldv | ⊢ Rel ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) | |
| 47 | 46 | releldmi | ⊢ ( 𝑥 ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ( ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝑥 ) ) · ( ( 𝑇 D 𝐺 ) ‘ 𝑥 ) ) → 𝑥 ∈ dom ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ) |
| 48 | 45 47 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ dom ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ) |
| 49 | 30 48 | eqelssd | ⊢ ( 𝜑 → dom ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) = 𝑌 ) |
| 50 | 49 | feq2d | ⊢ ( 𝜑 → ( ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) : dom ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ⟶ ℂ ↔ ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) : 𝑌 ⟶ ℂ ) ) |
| 51 | 25 50 | mpbid | ⊢ ( 𝜑 → ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) : 𝑌 ⟶ ℂ ) |
| 52 | 51 | feqmptd | ⊢ ( 𝜑 → ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) = ( 𝑥 ∈ 𝑌 ↦ ( ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) ‘ 𝑥 ) ) ) |
| 53 | 2 13 | ssexd | ⊢ ( 𝜑 → 𝑌 ∈ V ) |
| 54 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ∈ V ) | |
| 55 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑇 D 𝐺 ) ‘ 𝑥 ) ∈ V ) | |
| 56 | 4 | feqmptd | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝑌 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 57 | 1 34 | syl | ⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
| 58 | 5 | feq2d | ⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ↔ ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ ) ) |
| 59 | 57 58 | mpbid | ⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ ) |
| 60 | 59 | feqmptd | ⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) = ( 𝑦 ∈ 𝑋 ↦ ( ( 𝑆 D 𝐹 ) ‘ 𝑦 ) ) ) |
| 61 | fveq2 | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑥 ) → ( ( 𝑆 D 𝐹 ) ‘ 𝑦 ) = ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) | |
| 62 | 17 56 60 61 | fmptco | ⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) ∘ 𝐺 ) = ( 𝑥 ∈ 𝑌 ↦ ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 63 | 2 39 | syl | ⊢ ( 𝜑 → ( 𝑇 D 𝐺 ) : dom ( 𝑇 D 𝐺 ) ⟶ ℂ ) |
| 64 | 6 | feq2d | ⊢ ( 𝜑 → ( ( 𝑇 D 𝐺 ) : dom ( 𝑇 D 𝐺 ) ⟶ ℂ ↔ ( 𝑇 D 𝐺 ) : 𝑌 ⟶ ℂ ) ) |
| 65 | 63 64 | mpbid | ⊢ ( 𝜑 → ( 𝑇 D 𝐺 ) : 𝑌 ⟶ ℂ ) |
| 66 | 65 | feqmptd | ⊢ ( 𝜑 → ( 𝑇 D 𝐺 ) = ( 𝑥 ∈ 𝑌 ↦ ( ( 𝑇 D 𝐺 ) ‘ 𝑥 ) ) ) |
| 67 | 53 54 55 62 66 | offval2 | ⊢ ( 𝜑 → ( ( ( 𝑆 D 𝐹 ) ∘ 𝐺 ) ∘f · ( 𝑇 D 𝐺 ) ) = ( 𝑥 ∈ 𝑌 ↦ ( ( ( 𝑆 D 𝐹 ) ‘ ( 𝐺 ‘ 𝑥 ) ) · ( ( 𝑇 D 𝐺 ) ‘ 𝑥 ) ) ) ) |
| 68 | 23 52 67 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝑇 D ( 𝐹 ∘ 𝐺 ) ) = ( ( ( 𝑆 D 𝐹 ) ∘ 𝐺 ) ∘f · ( 𝑇 D 𝐺 ) ) ) |