This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The chain rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 10-Aug-2014) (Revised by Mario Carneiro, 10-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvcof.s | |- ( ph -> S e. { RR , CC } ) |
|
| dvcof.t | |- ( ph -> T e. { RR , CC } ) |
||
| dvcof.f | |- ( ph -> F : X --> CC ) |
||
| dvcof.g | |- ( ph -> G : Y --> X ) |
||
| dvcof.df | |- ( ph -> dom ( S _D F ) = X ) |
||
| dvcof.dg | |- ( ph -> dom ( T _D G ) = Y ) |
||
| Assertion | dvcof | |- ( ph -> ( T _D ( F o. G ) ) = ( ( ( S _D F ) o. G ) oF x. ( T _D G ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvcof.s | |- ( ph -> S e. { RR , CC } ) |
|
| 2 | dvcof.t | |- ( ph -> T e. { RR , CC } ) |
|
| 3 | dvcof.f | |- ( ph -> F : X --> CC ) |
|
| 4 | dvcof.g | |- ( ph -> G : Y --> X ) |
|
| 5 | dvcof.df | |- ( ph -> dom ( S _D F ) = X ) |
|
| 6 | dvcof.dg | |- ( ph -> dom ( T _D G ) = Y ) |
|
| 7 | 3 | adantr | |- ( ( ph /\ x e. Y ) -> F : X --> CC ) |
| 8 | dvbsss | |- dom ( S _D F ) C_ S |
|
| 9 | 5 8 | eqsstrrdi | |- ( ph -> X C_ S ) |
| 10 | 9 | adantr | |- ( ( ph /\ x e. Y ) -> X C_ S ) |
| 11 | 4 | adantr | |- ( ( ph /\ x e. Y ) -> G : Y --> X ) |
| 12 | dvbsss | |- dom ( T _D G ) C_ T |
|
| 13 | 6 12 | eqsstrrdi | |- ( ph -> Y C_ T ) |
| 14 | 13 | adantr | |- ( ( ph /\ x e. Y ) -> Y C_ T ) |
| 15 | 1 | adantr | |- ( ( ph /\ x e. Y ) -> S e. { RR , CC } ) |
| 16 | 2 | adantr | |- ( ( ph /\ x e. Y ) -> T e. { RR , CC } ) |
| 17 | 4 | ffvelcdmda | |- ( ( ph /\ x e. Y ) -> ( G ` x ) e. X ) |
| 18 | 5 | adantr | |- ( ( ph /\ x e. Y ) -> dom ( S _D F ) = X ) |
| 19 | 17 18 | eleqtrrd | |- ( ( ph /\ x e. Y ) -> ( G ` x ) e. dom ( S _D F ) ) |
| 20 | 6 | eleq2d | |- ( ph -> ( x e. dom ( T _D G ) <-> x e. Y ) ) |
| 21 | 20 | biimpar | |- ( ( ph /\ x e. Y ) -> x e. dom ( T _D G ) ) |
| 22 | 7 10 11 14 15 16 19 21 | dvco | |- ( ( ph /\ x e. Y ) -> ( ( T _D ( F o. G ) ) ` x ) = ( ( ( S _D F ) ` ( G ` x ) ) x. ( ( T _D G ) ` x ) ) ) |
| 23 | 22 | mpteq2dva | |- ( ph -> ( x e. Y |-> ( ( T _D ( F o. G ) ) ` x ) ) = ( x e. Y |-> ( ( ( S _D F ) ` ( G ` x ) ) x. ( ( T _D G ) ` x ) ) ) ) |
| 24 | dvfg | |- ( T e. { RR , CC } -> ( T _D ( F o. G ) ) : dom ( T _D ( F o. G ) ) --> CC ) |
|
| 25 | 2 24 | syl | |- ( ph -> ( T _D ( F o. G ) ) : dom ( T _D ( F o. G ) ) --> CC ) |
| 26 | recnprss | |- ( T e. { RR , CC } -> T C_ CC ) |
|
| 27 | 2 26 | syl | |- ( ph -> T C_ CC ) |
| 28 | fco | |- ( ( F : X --> CC /\ G : Y --> X ) -> ( F o. G ) : Y --> CC ) |
|
| 29 | 3 4 28 | syl2anc | |- ( ph -> ( F o. G ) : Y --> CC ) |
| 30 | 27 29 13 | dvbss | |- ( ph -> dom ( T _D ( F o. G ) ) C_ Y ) |
| 31 | recnprss | |- ( S e. { RR , CC } -> S C_ CC ) |
|
| 32 | 15 31 | syl | |- ( ( ph /\ x e. Y ) -> S C_ CC ) |
| 33 | 16 26 | syl | |- ( ( ph /\ x e. Y ) -> T C_ CC ) |
| 34 | dvfg | |- ( S e. { RR , CC } -> ( S _D F ) : dom ( S _D F ) --> CC ) |
|
| 35 | ffun | |- ( ( S _D F ) : dom ( S _D F ) --> CC -> Fun ( S _D F ) ) |
|
| 36 | funfvbrb | |- ( Fun ( S _D F ) -> ( ( G ` x ) e. dom ( S _D F ) <-> ( G ` x ) ( S _D F ) ( ( S _D F ) ` ( G ` x ) ) ) ) |
|
| 37 | 15 34 35 36 | 4syl | |- ( ( ph /\ x e. Y ) -> ( ( G ` x ) e. dom ( S _D F ) <-> ( G ` x ) ( S _D F ) ( ( S _D F ) ` ( G ` x ) ) ) ) |
| 38 | 19 37 | mpbid | |- ( ( ph /\ x e. Y ) -> ( G ` x ) ( S _D F ) ( ( S _D F ) ` ( G ` x ) ) ) |
| 39 | dvfg | |- ( T e. { RR , CC } -> ( T _D G ) : dom ( T _D G ) --> CC ) |
|
| 40 | ffun | |- ( ( T _D G ) : dom ( T _D G ) --> CC -> Fun ( T _D G ) ) |
|
| 41 | funfvbrb | |- ( Fun ( T _D G ) -> ( x e. dom ( T _D G ) <-> x ( T _D G ) ( ( T _D G ) ` x ) ) ) |
|
| 42 | 16 39 40 41 | 4syl | |- ( ( ph /\ x e. Y ) -> ( x e. dom ( T _D G ) <-> x ( T _D G ) ( ( T _D G ) ` x ) ) ) |
| 43 | 21 42 | mpbid | |- ( ( ph /\ x e. Y ) -> x ( T _D G ) ( ( T _D G ) ` x ) ) |
| 44 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 45 | 7 10 11 14 32 33 38 43 44 | dvcobr | |- ( ( ph /\ x e. Y ) -> x ( T _D ( F o. G ) ) ( ( ( S _D F ) ` ( G ` x ) ) x. ( ( T _D G ) ` x ) ) ) |
| 46 | reldv | |- Rel ( T _D ( F o. G ) ) |
|
| 47 | 46 | releldmi | |- ( x ( T _D ( F o. G ) ) ( ( ( S _D F ) ` ( G ` x ) ) x. ( ( T _D G ) ` x ) ) -> x e. dom ( T _D ( F o. G ) ) ) |
| 48 | 45 47 | syl | |- ( ( ph /\ x e. Y ) -> x e. dom ( T _D ( F o. G ) ) ) |
| 49 | 30 48 | eqelssd | |- ( ph -> dom ( T _D ( F o. G ) ) = Y ) |
| 50 | 49 | feq2d | |- ( ph -> ( ( T _D ( F o. G ) ) : dom ( T _D ( F o. G ) ) --> CC <-> ( T _D ( F o. G ) ) : Y --> CC ) ) |
| 51 | 25 50 | mpbid | |- ( ph -> ( T _D ( F o. G ) ) : Y --> CC ) |
| 52 | 51 | feqmptd | |- ( ph -> ( T _D ( F o. G ) ) = ( x e. Y |-> ( ( T _D ( F o. G ) ) ` x ) ) ) |
| 53 | 2 13 | ssexd | |- ( ph -> Y e. _V ) |
| 54 | fvexd | |- ( ( ph /\ x e. Y ) -> ( ( S _D F ) ` ( G ` x ) ) e. _V ) |
|
| 55 | fvexd | |- ( ( ph /\ x e. Y ) -> ( ( T _D G ) ` x ) e. _V ) |
|
| 56 | 4 | feqmptd | |- ( ph -> G = ( x e. Y |-> ( G ` x ) ) ) |
| 57 | 1 34 | syl | |- ( ph -> ( S _D F ) : dom ( S _D F ) --> CC ) |
| 58 | 5 | feq2d | |- ( ph -> ( ( S _D F ) : dom ( S _D F ) --> CC <-> ( S _D F ) : X --> CC ) ) |
| 59 | 57 58 | mpbid | |- ( ph -> ( S _D F ) : X --> CC ) |
| 60 | 59 | feqmptd | |- ( ph -> ( S _D F ) = ( y e. X |-> ( ( S _D F ) ` y ) ) ) |
| 61 | fveq2 | |- ( y = ( G ` x ) -> ( ( S _D F ) ` y ) = ( ( S _D F ) ` ( G ` x ) ) ) |
|
| 62 | 17 56 60 61 | fmptco | |- ( ph -> ( ( S _D F ) o. G ) = ( x e. Y |-> ( ( S _D F ) ` ( G ` x ) ) ) ) |
| 63 | 2 39 | syl | |- ( ph -> ( T _D G ) : dom ( T _D G ) --> CC ) |
| 64 | 6 | feq2d | |- ( ph -> ( ( T _D G ) : dom ( T _D G ) --> CC <-> ( T _D G ) : Y --> CC ) ) |
| 65 | 63 64 | mpbid | |- ( ph -> ( T _D G ) : Y --> CC ) |
| 66 | 65 | feqmptd | |- ( ph -> ( T _D G ) = ( x e. Y |-> ( ( T _D G ) ` x ) ) ) |
| 67 | 53 54 55 62 66 | offval2 | |- ( ph -> ( ( ( S _D F ) o. G ) oF x. ( T _D G ) ) = ( x e. Y |-> ( ( ( S _D F ) ` ( G ` x ) ) x. ( ( T _D G ) ` x ) ) ) ) |
| 68 | 23 52 67 | 3eqtr4d | |- ( ph -> ( T _D ( F o. G ) ) = ( ( ( S _D F ) o. G ) oF x. ( T _D G ) ) ) |