This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The all-zero vector is contained in the finite hull, since its support is empty and therefore finite. This theorem along with the next one effectively proves that the finite hull is a "submonoid", although that does not exist as a defined concept yet. (Contributed by Stefan O'Rear, 11-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dsmmcl.p | ⊢ 𝑃 = ( 𝑆 Xs 𝑅 ) | |
| dsmmcl.h | ⊢ 𝐻 = ( Base ‘ ( 𝑆 ⊕m 𝑅 ) ) | ||
| dsmmcl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| dsmmcl.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| dsmmcl.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Mnd ) | ||
| dsmm0cl.z | ⊢ 0 = ( 0g ‘ 𝑃 ) | ||
| Assertion | dsmm0cl | ⊢ ( 𝜑 → 0 ∈ 𝐻 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dsmmcl.p | ⊢ 𝑃 = ( 𝑆 Xs 𝑅 ) | |
| 2 | dsmmcl.h | ⊢ 𝐻 = ( Base ‘ ( 𝑆 ⊕m 𝑅 ) ) | |
| 3 | dsmmcl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 4 | dsmmcl.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 5 | dsmmcl.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Mnd ) | |
| 6 | dsmm0cl.z | ⊢ 0 = ( 0g ‘ 𝑃 ) | |
| 7 | 1 3 4 5 | prdsmndd | ⊢ ( 𝜑 → 𝑃 ∈ Mnd ) |
| 8 | eqid | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) | |
| 9 | 8 6 | mndidcl | ⊢ ( 𝑃 ∈ Mnd → 0 ∈ ( Base ‘ 𝑃 ) ) |
| 10 | 7 9 | syl | ⊢ ( 𝜑 → 0 ∈ ( Base ‘ 𝑃 ) ) |
| 11 | 1 3 4 5 | prds0g | ⊢ ( 𝜑 → ( 0g ∘ 𝑅 ) = ( 0g ‘ 𝑃 ) ) |
| 12 | 11 6 | eqtr4di | ⊢ ( 𝜑 → ( 0g ∘ 𝑅 ) = 0 ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → ( 0g ∘ 𝑅 ) = 0 ) |
| 14 | 13 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → ( ( 0g ∘ 𝑅 ) ‘ 𝑎 ) = ( 0 ‘ 𝑎 ) ) |
| 15 | 5 | ffnd | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) |
| 16 | fvco2 | ⊢ ( ( 𝑅 Fn 𝐼 ∧ 𝑎 ∈ 𝐼 ) → ( ( 0g ∘ 𝑅 ) ‘ 𝑎 ) = ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ) | |
| 17 | 15 16 | sylan | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → ( ( 0g ∘ 𝑅 ) ‘ 𝑎 ) = ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ) |
| 18 | 14 17 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → ( 0 ‘ 𝑎 ) = ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ) |
| 19 | nne | ⊢ ( ¬ ( 0 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ↔ ( 0 ‘ 𝑎 ) = ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ) | |
| 20 | 18 19 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → ¬ ( 0 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ) |
| 21 | 20 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐼 ¬ ( 0 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ) |
| 22 | rabeq0 | ⊢ ( { 𝑎 ∈ 𝐼 ∣ ( 0 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } = ∅ ↔ ∀ 𝑎 ∈ 𝐼 ¬ ( 0 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ) | |
| 23 | 21 22 | sylibr | ⊢ ( 𝜑 → { 𝑎 ∈ 𝐼 ∣ ( 0 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } = ∅ ) |
| 24 | 0fi | ⊢ ∅ ∈ Fin | |
| 25 | 23 24 | eqeltrdi | ⊢ ( 𝜑 → { 𝑎 ∈ 𝐼 ∣ ( 0 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ∈ Fin ) |
| 26 | eqid | ⊢ ( 𝑆 ⊕m 𝑅 ) = ( 𝑆 ⊕m 𝑅 ) | |
| 27 | 1 26 8 2 3 15 | dsmmelbas | ⊢ ( 𝜑 → ( 0 ∈ 𝐻 ↔ ( 0 ∈ ( Base ‘ 𝑃 ) ∧ { 𝑎 ∈ 𝐼 ∣ ( 0 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ∈ Fin ) ) ) |
| 28 | 10 25 27 | mpbir2and | ⊢ ( 𝜑 → 0 ∈ 𝐻 ) |