This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The finite hull of a product of groups is additionally closed under negation and thus is a subgroup of the product. (Contributed by Stefan O'Rear, 11-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dsmmsubg.p | |- P = ( S Xs_ R ) |
|
| dsmmsubg.h | |- H = ( Base ` ( S (+)m R ) ) |
||
| dsmmsubg.i | |- ( ph -> I e. W ) |
||
| dsmmsubg.s | |- ( ph -> S e. V ) |
||
| dsmmsubg.r | |- ( ph -> R : I --> Grp ) |
||
| Assertion | dsmmsubg | |- ( ph -> H e. ( SubGrp ` P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dsmmsubg.p | |- P = ( S Xs_ R ) |
|
| 2 | dsmmsubg.h | |- H = ( Base ` ( S (+)m R ) ) |
|
| 3 | dsmmsubg.i | |- ( ph -> I e. W ) |
|
| 4 | dsmmsubg.s | |- ( ph -> S e. V ) |
|
| 5 | dsmmsubg.r | |- ( ph -> R : I --> Grp ) |
|
| 6 | eqidd | |- ( ph -> ( P |`s H ) = ( P |`s H ) ) |
|
| 7 | eqidd | |- ( ph -> ( 0g ` P ) = ( 0g ` P ) ) |
|
| 8 | eqidd | |- ( ph -> ( +g ` P ) = ( +g ` P ) ) |
|
| 9 | 5 3 | fexd | |- ( ph -> R e. _V ) |
| 10 | eqid | |- { a e. ( Base ` ( S Xs_ R ) ) | { b e. dom R | ( a ` b ) =/= ( 0g ` ( R ` b ) ) } e. Fin } = { a e. ( Base ` ( S Xs_ R ) ) | { b e. dom R | ( a ` b ) =/= ( 0g ` ( R ` b ) ) } e. Fin } |
|
| 11 | 10 | dsmmbase | |- ( R e. _V -> { a e. ( Base ` ( S Xs_ R ) ) | { b e. dom R | ( a ` b ) =/= ( 0g ` ( R ` b ) ) } e. Fin } = ( Base ` ( S (+)m R ) ) ) |
| 12 | 9 11 | syl | |- ( ph -> { a e. ( Base ` ( S Xs_ R ) ) | { b e. dom R | ( a ` b ) =/= ( 0g ` ( R ` b ) ) } e. Fin } = ( Base ` ( S (+)m R ) ) ) |
| 13 | ssrab2 | |- { a e. ( Base ` ( S Xs_ R ) ) | { b e. dom R | ( a ` b ) =/= ( 0g ` ( R ` b ) ) } e. Fin } C_ ( Base ` ( S Xs_ R ) ) |
|
| 14 | 12 13 | eqsstrrdi | |- ( ph -> ( Base ` ( S (+)m R ) ) C_ ( Base ` ( S Xs_ R ) ) ) |
| 15 | 1 | fveq2i | |- ( Base ` P ) = ( Base ` ( S Xs_ R ) ) |
| 16 | 14 2 15 | 3sstr4g | |- ( ph -> H C_ ( Base ` P ) ) |
| 17 | grpmnd | |- ( a e. Grp -> a e. Mnd ) |
|
| 18 | 17 | ssriv | |- Grp C_ Mnd |
| 19 | fss | |- ( ( R : I --> Grp /\ Grp C_ Mnd ) -> R : I --> Mnd ) |
|
| 20 | 5 18 19 | sylancl | |- ( ph -> R : I --> Mnd ) |
| 21 | eqid | |- ( 0g ` P ) = ( 0g ` P ) |
|
| 22 | 1 2 3 4 20 21 | dsmm0cl | |- ( ph -> ( 0g ` P ) e. H ) |
| 23 | 3 | 3ad2ant1 | |- ( ( ph /\ a e. H /\ b e. H ) -> I e. W ) |
| 24 | 4 | 3ad2ant1 | |- ( ( ph /\ a e. H /\ b e. H ) -> S e. V ) |
| 25 | 20 | 3ad2ant1 | |- ( ( ph /\ a e. H /\ b e. H ) -> R : I --> Mnd ) |
| 26 | simp2 | |- ( ( ph /\ a e. H /\ b e. H ) -> a e. H ) |
|
| 27 | simp3 | |- ( ( ph /\ a e. H /\ b e. H ) -> b e. H ) |
|
| 28 | eqid | |- ( +g ` P ) = ( +g ` P ) |
|
| 29 | 1 2 23 24 25 26 27 28 | dsmmacl | |- ( ( ph /\ a e. H /\ b e. H ) -> ( a ( +g ` P ) b ) e. H ) |
| 30 | 1 3 4 5 | prdsgrpd | |- ( ph -> P e. Grp ) |
| 31 | 30 | adantr | |- ( ( ph /\ a e. H ) -> P e. Grp ) |
| 32 | 16 | sselda | |- ( ( ph /\ a e. H ) -> a e. ( Base ` P ) ) |
| 33 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 34 | eqid | |- ( invg ` P ) = ( invg ` P ) |
|
| 35 | 33 34 | grpinvcl | |- ( ( P e. Grp /\ a e. ( Base ` P ) ) -> ( ( invg ` P ) ` a ) e. ( Base ` P ) ) |
| 36 | 31 32 35 | syl2anc | |- ( ( ph /\ a e. H ) -> ( ( invg ` P ) ` a ) e. ( Base ` P ) ) |
| 37 | simpr | |- ( ( ph /\ a e. H ) -> a e. H ) |
|
| 38 | eqid | |- ( S (+)m R ) = ( S (+)m R ) |
|
| 39 | 3 | adantr | |- ( ( ph /\ a e. H ) -> I e. W ) |
| 40 | 5 | ffnd | |- ( ph -> R Fn I ) |
| 41 | 40 | adantr | |- ( ( ph /\ a e. H ) -> R Fn I ) |
| 42 | 1 38 33 2 39 41 | dsmmelbas | |- ( ( ph /\ a e. H ) -> ( a e. H <-> ( a e. ( Base ` P ) /\ { b e. I | ( a ` b ) =/= ( 0g ` ( R ` b ) ) } e. Fin ) ) ) |
| 43 | 37 42 | mpbid | |- ( ( ph /\ a e. H ) -> ( a e. ( Base ` P ) /\ { b e. I | ( a ` b ) =/= ( 0g ` ( R ` b ) ) } e. Fin ) ) |
| 44 | 43 | simprd | |- ( ( ph /\ a e. H ) -> { b e. I | ( a ` b ) =/= ( 0g ` ( R ` b ) ) } e. Fin ) |
| 45 | 3 | ad2antrr | |- ( ( ( ph /\ a e. H ) /\ b e. I ) -> I e. W ) |
| 46 | 4 | ad2antrr | |- ( ( ( ph /\ a e. H ) /\ b e. I ) -> S e. V ) |
| 47 | 5 | ad2antrr | |- ( ( ( ph /\ a e. H ) /\ b e. I ) -> R : I --> Grp ) |
| 48 | 32 | adantr | |- ( ( ( ph /\ a e. H ) /\ b e. I ) -> a e. ( Base ` P ) ) |
| 49 | simpr | |- ( ( ( ph /\ a e. H ) /\ b e. I ) -> b e. I ) |
|
| 50 | 1 45 46 47 33 34 48 49 | prdsinvgd2 | |- ( ( ( ph /\ a e. H ) /\ b e. I ) -> ( ( ( invg ` P ) ` a ) ` b ) = ( ( invg ` ( R ` b ) ) ` ( a ` b ) ) ) |
| 51 | 50 | adantrr | |- ( ( ( ph /\ a e. H ) /\ ( b e. I /\ ( a ` b ) = ( 0g ` ( R ` b ) ) ) ) -> ( ( ( invg ` P ) ` a ) ` b ) = ( ( invg ` ( R ` b ) ) ` ( a ` b ) ) ) |
| 52 | fveq2 | |- ( ( a ` b ) = ( 0g ` ( R ` b ) ) -> ( ( invg ` ( R ` b ) ) ` ( a ` b ) ) = ( ( invg ` ( R ` b ) ) ` ( 0g ` ( R ` b ) ) ) ) |
|
| 53 | 52 | ad2antll | |- ( ( ( ph /\ a e. H ) /\ ( b e. I /\ ( a ` b ) = ( 0g ` ( R ` b ) ) ) ) -> ( ( invg ` ( R ` b ) ) ` ( a ` b ) ) = ( ( invg ` ( R ` b ) ) ` ( 0g ` ( R ` b ) ) ) ) |
| 54 | 5 | ffvelcdmda | |- ( ( ph /\ b e. I ) -> ( R ` b ) e. Grp ) |
| 55 | 54 | adantlr | |- ( ( ( ph /\ a e. H ) /\ b e. I ) -> ( R ` b ) e. Grp ) |
| 56 | eqid | |- ( 0g ` ( R ` b ) ) = ( 0g ` ( R ` b ) ) |
|
| 57 | eqid | |- ( invg ` ( R ` b ) ) = ( invg ` ( R ` b ) ) |
|
| 58 | 56 57 | grpinvid | |- ( ( R ` b ) e. Grp -> ( ( invg ` ( R ` b ) ) ` ( 0g ` ( R ` b ) ) ) = ( 0g ` ( R ` b ) ) ) |
| 59 | 55 58 | syl | |- ( ( ( ph /\ a e. H ) /\ b e. I ) -> ( ( invg ` ( R ` b ) ) ` ( 0g ` ( R ` b ) ) ) = ( 0g ` ( R ` b ) ) ) |
| 60 | 59 | adantrr | |- ( ( ( ph /\ a e. H ) /\ ( b e. I /\ ( a ` b ) = ( 0g ` ( R ` b ) ) ) ) -> ( ( invg ` ( R ` b ) ) ` ( 0g ` ( R ` b ) ) ) = ( 0g ` ( R ` b ) ) ) |
| 61 | 51 53 60 | 3eqtrd | |- ( ( ( ph /\ a e. H ) /\ ( b e. I /\ ( a ` b ) = ( 0g ` ( R ` b ) ) ) ) -> ( ( ( invg ` P ) ` a ) ` b ) = ( 0g ` ( R ` b ) ) ) |
| 62 | 61 | expr | |- ( ( ( ph /\ a e. H ) /\ b e. I ) -> ( ( a ` b ) = ( 0g ` ( R ` b ) ) -> ( ( ( invg ` P ) ` a ) ` b ) = ( 0g ` ( R ` b ) ) ) ) |
| 63 | 62 | necon3d | |- ( ( ( ph /\ a e. H ) /\ b e. I ) -> ( ( ( ( invg ` P ) ` a ) ` b ) =/= ( 0g ` ( R ` b ) ) -> ( a ` b ) =/= ( 0g ` ( R ` b ) ) ) ) |
| 64 | 63 | ss2rabdv | |- ( ( ph /\ a e. H ) -> { b e. I | ( ( ( invg ` P ) ` a ) ` b ) =/= ( 0g ` ( R ` b ) ) } C_ { b e. I | ( a ` b ) =/= ( 0g ` ( R ` b ) ) } ) |
| 65 | 44 64 | ssfid | |- ( ( ph /\ a e. H ) -> { b e. I | ( ( ( invg ` P ) ` a ) ` b ) =/= ( 0g ` ( R ` b ) ) } e. Fin ) |
| 66 | 1 38 33 2 39 41 | dsmmelbas | |- ( ( ph /\ a e. H ) -> ( ( ( invg ` P ) ` a ) e. H <-> ( ( ( invg ` P ) ` a ) e. ( Base ` P ) /\ { b e. I | ( ( ( invg ` P ) ` a ) ` b ) =/= ( 0g ` ( R ` b ) ) } e. Fin ) ) ) |
| 67 | 36 65 66 | mpbir2and | |- ( ( ph /\ a e. H ) -> ( ( invg ` P ) ` a ) e. H ) |
| 68 | 6 7 8 16 22 29 67 30 | issubgrpd2 | |- ( ph -> H e. ( SubGrp ` P ) ) |