This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negation of a single coordinate in a structure product. (Contributed by Stefan O'Rear, 11-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsinvgd2.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| prdsinvgd2.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| prdsinvgd2.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| prdsinvgd2.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Grp ) | ||
| prdsinvgd2.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| prdsinvgd2.n | ⊢ 𝑁 = ( invg ‘ 𝑌 ) | ||
| prdsinvgd2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| prdsinvgd2.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝐼 ) | ||
| Assertion | prdsinvgd2 | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) ‘ 𝐽 ) = ( ( invg ‘ ( 𝑅 ‘ 𝐽 ) ) ‘ ( 𝑋 ‘ 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsinvgd2.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| 2 | prdsinvgd2.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 3 | prdsinvgd2.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 4 | prdsinvgd2.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Grp ) | |
| 5 | prdsinvgd2.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 6 | prdsinvgd2.n | ⊢ 𝑁 = ( invg ‘ 𝑌 ) | |
| 7 | prdsinvgd2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 8 | prdsinvgd2.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝐼 ) | |
| 9 | 1 2 3 4 5 6 7 | prdsinvgd | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) ) ) ) |
| 10 | 9 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) ‘ 𝐽 ) = ( ( 𝑥 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) ) ) ‘ 𝐽 ) ) |
| 11 | 2fveq3 | ⊢ ( 𝑥 = 𝐽 → ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) = ( invg ‘ ( 𝑅 ‘ 𝐽 ) ) ) | |
| 12 | fveq2 | ⊢ ( 𝑥 = 𝐽 → ( 𝑋 ‘ 𝑥 ) = ( 𝑋 ‘ 𝐽 ) ) | |
| 13 | 11 12 | fveq12d | ⊢ ( 𝑥 = 𝐽 → ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) ) = ( ( invg ‘ ( 𝑅 ‘ 𝐽 ) ) ‘ ( 𝑋 ‘ 𝐽 ) ) ) |
| 14 | eqid | ⊢ ( 𝑥 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) ) ) | |
| 15 | fvex | ⊢ ( ( invg ‘ ( 𝑅 ‘ 𝐽 ) ) ‘ ( 𝑋 ‘ 𝐽 ) ) ∈ V | |
| 16 | 13 14 15 | fvmpt | ⊢ ( 𝐽 ∈ 𝐼 → ( ( 𝑥 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) ) ) ‘ 𝐽 ) = ( ( invg ‘ ( 𝑅 ‘ 𝐽 ) ) ‘ ( 𝑋 ‘ 𝐽 ) ) ) |
| 17 | 8 16 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) ) ) ‘ 𝐽 ) = ( ( invg ‘ ( 𝑅 ‘ 𝐽 ) ) ‘ ( 𝑋 ‘ 𝐽 ) ) ) |
| 18 | 10 17 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) ‘ 𝐽 ) = ( ( invg ‘ ( 𝑅 ‘ 𝐽 ) ) ‘ ( 𝑋 ‘ 𝐽 ) ) ) |