This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The finite hull is closed under addition. (Contributed by Stefan O'Rear, 11-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dsmmcl.p | ⊢ 𝑃 = ( 𝑆 Xs 𝑅 ) | |
| dsmmcl.h | ⊢ 𝐻 = ( Base ‘ ( 𝑆 ⊕m 𝑅 ) ) | ||
| dsmmcl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| dsmmcl.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| dsmmcl.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Mnd ) | ||
| dsmmacl.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝐻 ) | ||
| dsmmacl.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝐻 ) | ||
| dsmmacl.a | ⊢ + = ( +g ‘ 𝑃 ) | ||
| Assertion | dsmmacl | ⊢ ( 𝜑 → ( 𝐽 + 𝐾 ) ∈ 𝐻 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dsmmcl.p | ⊢ 𝑃 = ( 𝑆 Xs 𝑅 ) | |
| 2 | dsmmcl.h | ⊢ 𝐻 = ( Base ‘ ( 𝑆 ⊕m 𝑅 ) ) | |
| 3 | dsmmcl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 4 | dsmmcl.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 5 | dsmmcl.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Mnd ) | |
| 6 | dsmmacl.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝐻 ) | |
| 7 | dsmmacl.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝐻 ) | |
| 8 | dsmmacl.a | ⊢ + = ( +g ‘ 𝑃 ) | |
| 9 | eqid | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) | |
| 10 | eqid | ⊢ ( 𝑆 ⊕m 𝑅 ) = ( 𝑆 ⊕m 𝑅 ) | |
| 11 | 5 | ffnd | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) |
| 12 | 1 10 9 2 3 11 | dsmmelbas | ⊢ ( 𝜑 → ( 𝐽 ∈ 𝐻 ↔ ( 𝐽 ∈ ( Base ‘ 𝑃 ) ∧ { 𝑎 ∈ 𝐼 ∣ ( 𝐽 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ∈ Fin ) ) ) |
| 13 | 6 12 | mpbid | ⊢ ( 𝜑 → ( 𝐽 ∈ ( Base ‘ 𝑃 ) ∧ { 𝑎 ∈ 𝐼 ∣ ( 𝐽 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ∈ Fin ) ) |
| 14 | 13 | simpld | ⊢ ( 𝜑 → 𝐽 ∈ ( Base ‘ 𝑃 ) ) |
| 15 | 1 10 9 2 3 11 | dsmmelbas | ⊢ ( 𝜑 → ( 𝐾 ∈ 𝐻 ↔ ( 𝐾 ∈ ( Base ‘ 𝑃 ) ∧ { 𝑎 ∈ 𝐼 ∣ ( 𝐾 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ∈ Fin ) ) ) |
| 16 | 7 15 | mpbid | ⊢ ( 𝜑 → ( 𝐾 ∈ ( Base ‘ 𝑃 ) ∧ { 𝑎 ∈ 𝐼 ∣ ( 𝐾 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ∈ Fin ) ) |
| 17 | 16 | simpld | ⊢ ( 𝜑 → 𝐾 ∈ ( Base ‘ 𝑃 ) ) |
| 18 | 1 9 8 4 3 5 14 17 | prdsplusgcl | ⊢ ( 𝜑 → ( 𝐽 + 𝐾 ) ∈ ( Base ‘ 𝑃 ) ) |
| 19 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → 𝑆 ∈ 𝑉 ) |
| 20 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
| 21 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → 𝑅 Fn 𝐼 ) |
| 22 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → 𝐽 ∈ ( Base ‘ 𝑃 ) ) |
| 23 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → 𝐾 ∈ ( Base ‘ 𝑃 ) ) |
| 24 | simpr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → 𝑎 ∈ 𝐼 ) | |
| 25 | 1 9 19 20 21 22 23 8 24 | prdsplusgfval | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → ( ( 𝐽 + 𝐾 ) ‘ 𝑎 ) = ( ( 𝐽 ‘ 𝑎 ) ( +g ‘ ( 𝑅 ‘ 𝑎 ) ) ( 𝐾 ‘ 𝑎 ) ) ) |
| 26 | 25 | neeq1d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → ( ( ( 𝐽 + 𝐾 ) ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ↔ ( ( 𝐽 ‘ 𝑎 ) ( +g ‘ ( 𝑅 ‘ 𝑎 ) ) ( 𝐾 ‘ 𝑎 ) ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ) ) |
| 27 | 26 | rabbidva | ⊢ ( 𝜑 → { 𝑎 ∈ 𝐼 ∣ ( ( 𝐽 + 𝐾 ) ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } = { 𝑎 ∈ 𝐼 ∣ ( ( 𝐽 ‘ 𝑎 ) ( +g ‘ ( 𝑅 ‘ 𝑎 ) ) ( 𝐾 ‘ 𝑎 ) ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ) |
| 28 | 13 | simprd | ⊢ ( 𝜑 → { 𝑎 ∈ 𝐼 ∣ ( 𝐽 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ∈ Fin ) |
| 29 | 16 | simprd | ⊢ ( 𝜑 → { 𝑎 ∈ 𝐼 ∣ ( 𝐾 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ∈ Fin ) |
| 30 | unfi | ⊢ ( ( { 𝑎 ∈ 𝐼 ∣ ( 𝐽 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ∈ Fin ∧ { 𝑎 ∈ 𝐼 ∣ ( 𝐾 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ∈ Fin ) → ( { 𝑎 ∈ 𝐼 ∣ ( 𝐽 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ∪ { 𝑎 ∈ 𝐼 ∣ ( 𝐾 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ) ∈ Fin ) | |
| 31 | 28 29 30 | syl2anc | ⊢ ( 𝜑 → ( { 𝑎 ∈ 𝐼 ∣ ( 𝐽 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ∪ { 𝑎 ∈ 𝐼 ∣ ( 𝐾 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ) ∈ Fin ) |
| 32 | neorian | ⊢ ( ( ( 𝐽 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ∨ ( 𝐾 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ) ↔ ¬ ( ( 𝐽 ‘ 𝑎 ) = ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ∧ ( 𝐾 ‘ 𝑎 ) = ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ) ) | |
| 33 | 32 | bicomi | ⊢ ( ¬ ( ( 𝐽 ‘ 𝑎 ) = ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ∧ ( 𝐾 ‘ 𝑎 ) = ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ) ↔ ( ( 𝐽 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ∨ ( 𝐾 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ) ) |
| 34 | 33 | con1bii | ⊢ ( ¬ ( ( 𝐽 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ∨ ( 𝐾 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ) ↔ ( ( 𝐽 ‘ 𝑎 ) = ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ∧ ( 𝐾 ‘ 𝑎 ) = ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ) ) |
| 35 | 5 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑎 ) ∈ Mnd ) |
| 36 | eqid | ⊢ ( Base ‘ ( 𝑅 ‘ 𝑎 ) ) = ( Base ‘ ( 𝑅 ‘ 𝑎 ) ) | |
| 37 | eqid | ⊢ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) | |
| 38 | 36 37 | mndidcl | ⊢ ( ( 𝑅 ‘ 𝑎 ) ∈ Mnd → ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑎 ) ) ) |
| 39 | eqid | ⊢ ( +g ‘ ( 𝑅 ‘ 𝑎 ) ) = ( +g ‘ ( 𝑅 ‘ 𝑎 ) ) | |
| 40 | 36 39 37 | mndlid | ⊢ ( ( ( 𝑅 ‘ 𝑎 ) ∈ Mnd ∧ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑎 ) ) ) → ( ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ( +g ‘ ( 𝑅 ‘ 𝑎 ) ) ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ) |
| 41 | 35 38 40 | syl2anc2 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → ( ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ( +g ‘ ( 𝑅 ‘ 𝑎 ) ) ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ) |
| 42 | oveq12 | ⊢ ( ( ( 𝐽 ‘ 𝑎 ) = ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ∧ ( 𝐾 ‘ 𝑎 ) = ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ) → ( ( 𝐽 ‘ 𝑎 ) ( +g ‘ ( 𝑅 ‘ 𝑎 ) ) ( 𝐾 ‘ 𝑎 ) ) = ( ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ( +g ‘ ( 𝑅 ‘ 𝑎 ) ) ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ) ) | |
| 43 | 42 | eqeq1d | ⊢ ( ( ( 𝐽 ‘ 𝑎 ) = ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ∧ ( 𝐾 ‘ 𝑎 ) = ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ) → ( ( ( 𝐽 ‘ 𝑎 ) ( +g ‘ ( 𝑅 ‘ 𝑎 ) ) ( 𝐾 ‘ 𝑎 ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ↔ ( ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ( +g ‘ ( 𝑅 ‘ 𝑎 ) ) ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ) ) |
| 44 | 41 43 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → ( ( ( 𝐽 ‘ 𝑎 ) = ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ∧ ( 𝐾 ‘ 𝑎 ) = ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ) → ( ( 𝐽 ‘ 𝑎 ) ( +g ‘ ( 𝑅 ‘ 𝑎 ) ) ( 𝐾 ‘ 𝑎 ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ) ) |
| 45 | 34 44 | biimtrid | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → ( ¬ ( ( 𝐽 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ∨ ( 𝐾 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ) → ( ( 𝐽 ‘ 𝑎 ) ( +g ‘ ( 𝑅 ‘ 𝑎 ) ) ( 𝐾 ‘ 𝑎 ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ) ) |
| 46 | 45 | necon1ad | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → ( ( ( 𝐽 ‘ 𝑎 ) ( +g ‘ ( 𝑅 ‘ 𝑎 ) ) ( 𝐾 ‘ 𝑎 ) ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) → ( ( 𝐽 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ∨ ( 𝐾 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ) ) ) |
| 47 | 46 | ss2rabdv | ⊢ ( 𝜑 → { 𝑎 ∈ 𝐼 ∣ ( ( 𝐽 ‘ 𝑎 ) ( +g ‘ ( 𝑅 ‘ 𝑎 ) ) ( 𝐾 ‘ 𝑎 ) ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ⊆ { 𝑎 ∈ 𝐼 ∣ ( ( 𝐽 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ∨ ( 𝐾 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ) } ) |
| 48 | unrab | ⊢ ( { 𝑎 ∈ 𝐼 ∣ ( 𝐽 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ∪ { 𝑎 ∈ 𝐼 ∣ ( 𝐾 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ) = { 𝑎 ∈ 𝐼 ∣ ( ( 𝐽 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ∨ ( 𝐾 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ) } | |
| 49 | 47 48 | sseqtrrdi | ⊢ ( 𝜑 → { 𝑎 ∈ 𝐼 ∣ ( ( 𝐽 ‘ 𝑎 ) ( +g ‘ ( 𝑅 ‘ 𝑎 ) ) ( 𝐾 ‘ 𝑎 ) ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ⊆ ( { 𝑎 ∈ 𝐼 ∣ ( 𝐽 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ∪ { 𝑎 ∈ 𝐼 ∣ ( 𝐾 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ) ) |
| 50 | 31 49 | ssfid | ⊢ ( 𝜑 → { 𝑎 ∈ 𝐼 ∣ ( ( 𝐽 ‘ 𝑎 ) ( +g ‘ ( 𝑅 ‘ 𝑎 ) ) ( 𝐾 ‘ 𝑎 ) ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ∈ Fin ) |
| 51 | 27 50 | eqeltrd | ⊢ ( 𝜑 → { 𝑎 ∈ 𝐼 ∣ ( ( 𝐽 + 𝐾 ) ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ∈ Fin ) |
| 52 | 1 10 9 2 3 11 | dsmmelbas | ⊢ ( 𝜑 → ( ( 𝐽 + 𝐾 ) ∈ 𝐻 ↔ ( ( 𝐽 + 𝐾 ) ∈ ( Base ‘ 𝑃 ) ∧ { 𝑎 ∈ 𝐼 ∣ ( ( 𝐽 + 𝐾 ) ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ∈ Fin ) ) ) |
| 53 | 18 51 52 | mpbir2and | ⊢ ( 𝜑 → ( 𝐽 + 𝐾 ) ∈ 𝐻 ) |