This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A division ring has only the two trivial ideals. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Wolf Lammen, 6-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drngnidl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| drngnidl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| drngnidl.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | ||
| Assertion | drngnidl | ⊢ ( 𝑅 ∈ DivRing → 𝑈 = { { 0 } , 𝐵 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngnidl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | drngnidl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | drngnidl.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| 4 | animorrl | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑎 = { 0 } ) → ( 𝑎 = { 0 } ∨ 𝑎 = 𝐵 ) ) | |
| 5 | drngring | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) | |
| 6 | 5 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑎 ≠ { 0 } ) → 𝑅 ∈ Ring ) |
| 7 | simplr | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑎 ≠ { 0 } ) → 𝑎 ∈ 𝑈 ) | |
| 8 | simpr | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑎 ≠ { 0 } ) → 𝑎 ≠ { 0 } ) | |
| 9 | 3 2 | lidlnz | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑎 ∈ 𝑈 ∧ 𝑎 ≠ { 0 } ) → ∃ 𝑏 ∈ 𝑎 𝑏 ≠ 0 ) |
| 10 | 6 7 8 9 | syl3anc | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑎 ≠ { 0 } ) → ∃ 𝑏 ∈ 𝑎 𝑏 ≠ 0 ) |
| 11 | simpll | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ ( 𝑏 ∈ 𝑎 ∧ 𝑏 ≠ 0 ) ) → 𝑅 ∈ DivRing ) | |
| 12 | 1 3 | lidlss | ⊢ ( 𝑎 ∈ 𝑈 → 𝑎 ⊆ 𝐵 ) |
| 13 | 12 | adantl | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) → 𝑎 ⊆ 𝐵 ) |
| 14 | 13 | sselda | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑏 ∈ 𝑎 ) → 𝑏 ∈ 𝐵 ) |
| 15 | 14 | adantrr | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ ( 𝑏 ∈ 𝑎 ∧ 𝑏 ≠ 0 ) ) → 𝑏 ∈ 𝐵 ) |
| 16 | simprr | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ ( 𝑏 ∈ 𝑎 ∧ 𝑏 ≠ 0 ) ) → 𝑏 ≠ 0 ) | |
| 17 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 18 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 19 | eqid | ⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) | |
| 20 | 1 2 17 18 19 | drnginvrl | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑏 ∈ 𝐵 ∧ 𝑏 ≠ 0 ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) 𝑏 ) = ( 1r ‘ 𝑅 ) ) |
| 21 | 11 15 16 20 | syl3anc | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ ( 𝑏 ∈ 𝑎 ∧ 𝑏 ≠ 0 ) ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) 𝑏 ) = ( 1r ‘ 𝑅 ) ) |
| 22 | 5 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ ( 𝑏 ∈ 𝑎 ∧ 𝑏 ≠ 0 ) ) → 𝑅 ∈ Ring ) |
| 23 | simplr | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ ( 𝑏 ∈ 𝑎 ∧ 𝑏 ≠ 0 ) ) → 𝑎 ∈ 𝑈 ) | |
| 24 | 1 2 19 | drnginvrcl | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑏 ∈ 𝐵 ∧ 𝑏 ≠ 0 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑏 ) ∈ 𝐵 ) |
| 25 | 11 15 16 24 | syl3anc | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ ( 𝑏 ∈ 𝑎 ∧ 𝑏 ≠ 0 ) ) → ( ( invr ‘ 𝑅 ) ‘ 𝑏 ) ∈ 𝐵 ) |
| 26 | simprl | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ ( 𝑏 ∈ 𝑎 ∧ 𝑏 ≠ 0 ) ) → 𝑏 ∈ 𝑎 ) | |
| 27 | 3 1 17 | lidlmcl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑎 ∈ 𝑈 ) ∧ ( ( ( invr ‘ 𝑅 ) ‘ 𝑏 ) ∈ 𝐵 ∧ 𝑏 ∈ 𝑎 ) ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) 𝑏 ) ∈ 𝑎 ) |
| 28 | 22 23 25 26 27 | syl22anc | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ ( 𝑏 ∈ 𝑎 ∧ 𝑏 ≠ 0 ) ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑏 ) ( .r ‘ 𝑅 ) 𝑏 ) ∈ 𝑎 ) |
| 29 | 21 28 | eqeltrrd | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ ( 𝑏 ∈ 𝑎 ∧ 𝑏 ≠ 0 ) ) → ( 1r ‘ 𝑅 ) ∈ 𝑎 ) |
| 30 | 29 | rexlimdvaa | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) → ( ∃ 𝑏 ∈ 𝑎 𝑏 ≠ 0 → ( 1r ‘ 𝑅 ) ∈ 𝑎 ) ) |
| 31 | 30 | imp | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ ∃ 𝑏 ∈ 𝑎 𝑏 ≠ 0 ) → ( 1r ‘ 𝑅 ) ∈ 𝑎 ) |
| 32 | 10 31 | syldan | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑎 ≠ { 0 } ) → ( 1r ‘ 𝑅 ) ∈ 𝑎 ) |
| 33 | 3 1 18 | lidl1el | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑎 ∈ 𝑈 ) → ( ( 1r ‘ 𝑅 ) ∈ 𝑎 ↔ 𝑎 = 𝐵 ) ) |
| 34 | 5 33 | sylan | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) → ( ( 1r ‘ 𝑅 ) ∈ 𝑎 ↔ 𝑎 = 𝐵 ) ) |
| 35 | 34 | adantr | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑎 ≠ { 0 } ) → ( ( 1r ‘ 𝑅 ) ∈ 𝑎 ↔ 𝑎 = 𝐵 ) ) |
| 36 | 32 35 | mpbid | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑎 ≠ { 0 } ) → 𝑎 = 𝐵 ) |
| 37 | 36 | olcd | ⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) ∧ 𝑎 ≠ { 0 } ) → ( 𝑎 = { 0 } ∨ 𝑎 = 𝐵 ) ) |
| 38 | 4 37 | pm2.61dane | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) → ( 𝑎 = { 0 } ∨ 𝑎 = 𝐵 ) ) |
| 39 | vex | ⊢ 𝑎 ∈ V | |
| 40 | 39 | elpr | ⊢ ( 𝑎 ∈ { { 0 } , 𝐵 } ↔ ( 𝑎 = { 0 } ∨ 𝑎 = 𝐵 ) ) |
| 41 | 38 40 | sylibr | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑎 ∈ 𝑈 ) → 𝑎 ∈ { { 0 } , 𝐵 } ) |
| 42 | 41 | ex | ⊢ ( 𝑅 ∈ DivRing → ( 𝑎 ∈ 𝑈 → 𝑎 ∈ { { 0 } , 𝐵 } ) ) |
| 43 | 42 | ssrdv | ⊢ ( 𝑅 ∈ DivRing → 𝑈 ⊆ { { 0 } , 𝐵 } ) |
| 44 | 3 2 | lidl0 | ⊢ ( 𝑅 ∈ Ring → { 0 } ∈ 𝑈 ) |
| 45 | 3 1 | lidl1 | ⊢ ( 𝑅 ∈ Ring → 𝐵 ∈ 𝑈 ) |
| 46 | 44 45 | prssd | ⊢ ( 𝑅 ∈ Ring → { { 0 } , 𝐵 } ⊆ 𝑈 ) |
| 47 | 5 46 | syl | ⊢ ( 𝑅 ∈ DivRing → { { 0 } , 𝐵 } ⊆ 𝑈 ) |
| 48 | 43 47 | eqssd | ⊢ ( 𝑅 ∈ DivRing → 𝑈 = { { 0 } , 𝐵 } ) |