This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every ring contains a unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015) (Proof shortened by AV, 18-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnglidl0.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| rnglidl1.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| Assertion | lidl1 | ⊢ ( 𝑅 ∈ Ring → 𝐵 ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnglidl0.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| 2 | rnglidl1.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | ringrng | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Rng ) | |
| 4 | 1 2 | rnglidl1 | ⊢ ( 𝑅 ∈ Rng → 𝐵 ∈ 𝑈 ) |
| 5 | 3 4 | syl | ⊢ ( 𝑅 ∈ Ring → 𝐵 ∈ 𝑈 ) |