This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every ring contains a zero ideal. (Contributed by Stefan O'Rear, 3-Jan-2015) (Proof shortened by AV, 18-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnglidl0.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| rnglidl0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | lidl0 | ⊢ ( 𝑅 ∈ Ring → { 0 } ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnglidl0.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| 2 | rnglidl0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | ringrng | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Rng ) | |
| 4 | 1 2 | rnglidl0 | ⊢ ( 𝑅 ∈ Rng → { 0 } ∈ 𝑈 ) |
| 5 | 3 4 | syl | ⊢ ( 𝑅 ∈ Ring → { 0 } ∈ 𝑈 ) |