This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A division ring has only the two trivial ideals. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Wolf Lammen, 6-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drngnidl.b | |- B = ( Base ` R ) |
|
| drngnidl.z | |- .0. = ( 0g ` R ) |
||
| drngnidl.u | |- U = ( LIdeal ` R ) |
||
| Assertion | drngnidl | |- ( R e. DivRing -> U = { { .0. } , B } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngnidl.b | |- B = ( Base ` R ) |
|
| 2 | drngnidl.z | |- .0. = ( 0g ` R ) |
|
| 3 | drngnidl.u | |- U = ( LIdeal ` R ) |
|
| 4 | animorrl | |- ( ( ( R e. DivRing /\ a e. U ) /\ a = { .0. } ) -> ( a = { .0. } \/ a = B ) ) |
|
| 5 | drngring | |- ( R e. DivRing -> R e. Ring ) |
|
| 6 | 5 | ad2antrr | |- ( ( ( R e. DivRing /\ a e. U ) /\ a =/= { .0. } ) -> R e. Ring ) |
| 7 | simplr | |- ( ( ( R e. DivRing /\ a e. U ) /\ a =/= { .0. } ) -> a e. U ) |
|
| 8 | simpr | |- ( ( ( R e. DivRing /\ a e. U ) /\ a =/= { .0. } ) -> a =/= { .0. } ) |
|
| 9 | 3 2 | lidlnz | |- ( ( R e. Ring /\ a e. U /\ a =/= { .0. } ) -> E. b e. a b =/= .0. ) |
| 10 | 6 7 8 9 | syl3anc | |- ( ( ( R e. DivRing /\ a e. U ) /\ a =/= { .0. } ) -> E. b e. a b =/= .0. ) |
| 11 | simpll | |- ( ( ( R e. DivRing /\ a e. U ) /\ ( b e. a /\ b =/= .0. ) ) -> R e. DivRing ) |
|
| 12 | 1 3 | lidlss | |- ( a e. U -> a C_ B ) |
| 13 | 12 | adantl | |- ( ( R e. DivRing /\ a e. U ) -> a C_ B ) |
| 14 | 13 | sselda | |- ( ( ( R e. DivRing /\ a e. U ) /\ b e. a ) -> b e. B ) |
| 15 | 14 | adantrr | |- ( ( ( R e. DivRing /\ a e. U ) /\ ( b e. a /\ b =/= .0. ) ) -> b e. B ) |
| 16 | simprr | |- ( ( ( R e. DivRing /\ a e. U ) /\ ( b e. a /\ b =/= .0. ) ) -> b =/= .0. ) |
|
| 17 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 18 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 19 | eqid | |- ( invr ` R ) = ( invr ` R ) |
|
| 20 | 1 2 17 18 19 | drnginvrl | |- ( ( R e. DivRing /\ b e. B /\ b =/= .0. ) -> ( ( ( invr ` R ) ` b ) ( .r ` R ) b ) = ( 1r ` R ) ) |
| 21 | 11 15 16 20 | syl3anc | |- ( ( ( R e. DivRing /\ a e. U ) /\ ( b e. a /\ b =/= .0. ) ) -> ( ( ( invr ` R ) ` b ) ( .r ` R ) b ) = ( 1r ` R ) ) |
| 22 | 5 | ad2antrr | |- ( ( ( R e. DivRing /\ a e. U ) /\ ( b e. a /\ b =/= .0. ) ) -> R e. Ring ) |
| 23 | simplr | |- ( ( ( R e. DivRing /\ a e. U ) /\ ( b e. a /\ b =/= .0. ) ) -> a e. U ) |
|
| 24 | 1 2 19 | drnginvrcl | |- ( ( R e. DivRing /\ b e. B /\ b =/= .0. ) -> ( ( invr ` R ) ` b ) e. B ) |
| 25 | 11 15 16 24 | syl3anc | |- ( ( ( R e. DivRing /\ a e. U ) /\ ( b e. a /\ b =/= .0. ) ) -> ( ( invr ` R ) ` b ) e. B ) |
| 26 | simprl | |- ( ( ( R e. DivRing /\ a e. U ) /\ ( b e. a /\ b =/= .0. ) ) -> b e. a ) |
|
| 27 | 3 1 17 | lidlmcl | |- ( ( ( R e. Ring /\ a e. U ) /\ ( ( ( invr ` R ) ` b ) e. B /\ b e. a ) ) -> ( ( ( invr ` R ) ` b ) ( .r ` R ) b ) e. a ) |
| 28 | 22 23 25 26 27 | syl22anc | |- ( ( ( R e. DivRing /\ a e. U ) /\ ( b e. a /\ b =/= .0. ) ) -> ( ( ( invr ` R ) ` b ) ( .r ` R ) b ) e. a ) |
| 29 | 21 28 | eqeltrrd | |- ( ( ( R e. DivRing /\ a e. U ) /\ ( b e. a /\ b =/= .0. ) ) -> ( 1r ` R ) e. a ) |
| 30 | 29 | rexlimdvaa | |- ( ( R e. DivRing /\ a e. U ) -> ( E. b e. a b =/= .0. -> ( 1r ` R ) e. a ) ) |
| 31 | 30 | imp | |- ( ( ( R e. DivRing /\ a e. U ) /\ E. b e. a b =/= .0. ) -> ( 1r ` R ) e. a ) |
| 32 | 10 31 | syldan | |- ( ( ( R e. DivRing /\ a e. U ) /\ a =/= { .0. } ) -> ( 1r ` R ) e. a ) |
| 33 | 3 1 18 | lidl1el | |- ( ( R e. Ring /\ a e. U ) -> ( ( 1r ` R ) e. a <-> a = B ) ) |
| 34 | 5 33 | sylan | |- ( ( R e. DivRing /\ a e. U ) -> ( ( 1r ` R ) e. a <-> a = B ) ) |
| 35 | 34 | adantr | |- ( ( ( R e. DivRing /\ a e. U ) /\ a =/= { .0. } ) -> ( ( 1r ` R ) e. a <-> a = B ) ) |
| 36 | 32 35 | mpbid | |- ( ( ( R e. DivRing /\ a e. U ) /\ a =/= { .0. } ) -> a = B ) |
| 37 | 36 | olcd | |- ( ( ( R e. DivRing /\ a e. U ) /\ a =/= { .0. } ) -> ( a = { .0. } \/ a = B ) ) |
| 38 | 4 37 | pm2.61dane | |- ( ( R e. DivRing /\ a e. U ) -> ( a = { .0. } \/ a = B ) ) |
| 39 | vex | |- a e. _V |
|
| 40 | 39 | elpr | |- ( a e. { { .0. } , B } <-> ( a = { .0. } \/ a = B ) ) |
| 41 | 38 40 | sylibr | |- ( ( R e. DivRing /\ a e. U ) -> a e. { { .0. } , B } ) |
| 42 | 41 | ex | |- ( R e. DivRing -> ( a e. U -> a e. { { .0. } , B } ) ) |
| 43 | 42 | ssrdv | |- ( R e. DivRing -> U C_ { { .0. } , B } ) |
| 44 | 3 2 | lidl0 | |- ( R e. Ring -> { .0. } e. U ) |
| 45 | 3 1 | lidl1 | |- ( R e. Ring -> B e. U ) |
| 46 | 44 45 | prssd | |- ( R e. Ring -> { { .0. } , B } C_ U ) |
| 47 | 5 46 | syl | |- ( R e. DivRing -> { { .0. } , B } C_ U ) |
| 48 | 43 47 | eqssd | |- ( R e. DivRing -> U = { { .0. } , B } ) |