This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left ideals and ring span of a ring depend only on the ring components. Here W is expected to be either B (when closure is available) or _V (when strong equality is available). (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lidlpropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| lidlpropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | ||
| lidlpropd.3 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝑊 ) | ||
| lidlpropd.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | ||
| lidlpropd.5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) ∈ 𝑊 ) | ||
| lidlpropd.6 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) | ||
| Assertion | lidlrsppropd | ⊢ ( 𝜑 → ( ( LIdeal ‘ 𝐾 ) = ( LIdeal ‘ 𝐿 ) ∧ ( RSpan ‘ 𝐾 ) = ( RSpan ‘ 𝐿 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlpropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| 2 | lidlpropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | |
| 3 | lidlpropd.3 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝑊 ) | |
| 4 | lidlpropd.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | |
| 5 | lidlpropd.5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) ∈ 𝑊 ) | |
| 6 | lidlpropd.6 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) | |
| 7 | rlmbas | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ ( ringLMod ‘ 𝐾 ) ) | |
| 8 | 1 7 | eqtrdi | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( ringLMod ‘ 𝐾 ) ) ) |
| 9 | rlmbas | ⊢ ( Base ‘ 𝐿 ) = ( Base ‘ ( ringLMod ‘ 𝐿 ) ) | |
| 10 | 2 9 | eqtrdi | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( ringLMod ‘ 𝐿 ) ) ) |
| 11 | rlmplusg | ⊢ ( +g ‘ 𝐾 ) = ( +g ‘ ( ringLMod ‘ 𝐾 ) ) | |
| 12 | 11 | oveqi | ⊢ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ringLMod ‘ 𝐾 ) ) 𝑦 ) |
| 13 | rlmplusg | ⊢ ( +g ‘ 𝐿 ) = ( +g ‘ ( ringLMod ‘ 𝐿 ) ) | |
| 14 | 13 | oveqi | ⊢ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ringLMod ‘ 𝐿 ) ) 𝑦 ) |
| 15 | 4 12 14 | 3eqtr3g | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ) ) → ( 𝑥 ( +g ‘ ( ringLMod ‘ 𝐾 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ringLMod ‘ 𝐿 ) ) 𝑦 ) ) |
| 16 | rlmvsca | ⊢ ( .r ‘ 𝐾 ) = ( ·𝑠 ‘ ( ringLMod ‘ 𝐾 ) ) | |
| 17 | 16 | oveqi | ⊢ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ ( ringLMod ‘ 𝐾 ) ) 𝑦 ) |
| 18 | 17 5 | eqeltrrid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ ( ringLMod ‘ 𝐾 ) ) 𝑦 ) ∈ 𝑊 ) |
| 19 | rlmvsca | ⊢ ( .r ‘ 𝐿 ) = ( ·𝑠 ‘ ( ringLMod ‘ 𝐿 ) ) | |
| 20 | 19 | oveqi | ⊢ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ ( ringLMod ‘ 𝐿 ) ) 𝑦 ) |
| 21 | 6 17 20 | 3eqtr3g | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ ( ringLMod ‘ 𝐾 ) ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ ( ringLMod ‘ 𝐿 ) ) 𝑦 ) ) |
| 22 | baseid | ⊢ Base = Slot ( Base ‘ ndx ) | |
| 23 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 24 | 22 23 | strfvi | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ ( I ‘ 𝐾 ) ) |
| 25 | rlmsca2 | ⊢ ( I ‘ 𝐾 ) = ( Scalar ‘ ( ringLMod ‘ 𝐾 ) ) | |
| 26 | 25 | fveq2i | ⊢ ( Base ‘ ( I ‘ 𝐾 ) ) = ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝐾 ) ) ) |
| 27 | 24 26 | eqtri | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝐾 ) ) ) |
| 28 | 1 27 | eqtrdi | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝐾 ) ) ) ) |
| 29 | eqid | ⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) | |
| 30 | 22 29 | strfvi | ⊢ ( Base ‘ 𝐿 ) = ( Base ‘ ( I ‘ 𝐿 ) ) |
| 31 | rlmsca2 | ⊢ ( I ‘ 𝐿 ) = ( Scalar ‘ ( ringLMod ‘ 𝐿 ) ) | |
| 32 | 31 | fveq2i | ⊢ ( Base ‘ ( I ‘ 𝐿 ) ) = ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝐿 ) ) ) |
| 33 | 30 32 | eqtri | ⊢ ( Base ‘ 𝐿 ) = ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝐿 ) ) ) |
| 34 | 2 33 | eqtrdi | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( Scalar ‘ ( ringLMod ‘ 𝐿 ) ) ) ) |
| 35 | 8 10 3 15 18 21 28 34 | lsspropd | ⊢ ( 𝜑 → ( LSubSp ‘ ( ringLMod ‘ 𝐾 ) ) = ( LSubSp ‘ ( ringLMod ‘ 𝐿 ) ) ) |
| 36 | lidlval | ⊢ ( LIdeal ‘ 𝐾 ) = ( LSubSp ‘ ( ringLMod ‘ 𝐾 ) ) | |
| 37 | lidlval | ⊢ ( LIdeal ‘ 𝐿 ) = ( LSubSp ‘ ( ringLMod ‘ 𝐿 ) ) | |
| 38 | 35 36 37 | 3eqtr4g | ⊢ ( 𝜑 → ( LIdeal ‘ 𝐾 ) = ( LIdeal ‘ 𝐿 ) ) |
| 39 | fvexd | ⊢ ( 𝜑 → ( ringLMod ‘ 𝐾 ) ∈ V ) | |
| 40 | fvexd | ⊢ ( 𝜑 → ( ringLMod ‘ 𝐿 ) ∈ V ) | |
| 41 | 8 10 3 15 18 21 28 34 39 40 | lsppropd | ⊢ ( 𝜑 → ( LSpan ‘ ( ringLMod ‘ 𝐾 ) ) = ( LSpan ‘ ( ringLMod ‘ 𝐿 ) ) ) |
| 42 | rspval | ⊢ ( RSpan ‘ 𝐾 ) = ( LSpan ‘ ( ringLMod ‘ 𝐾 ) ) | |
| 43 | rspval | ⊢ ( RSpan ‘ 𝐿 ) = ( LSpan ‘ ( ringLMod ‘ 𝐿 ) ) | |
| 44 | 41 42 43 | 3eqtr4g | ⊢ ( 𝜑 → ( RSpan ‘ 𝐾 ) = ( RSpan ‘ 𝐿 ) ) |
| 45 | 38 44 | jca | ⊢ ( 𝜑 → ( ( LIdeal ‘ 𝐾 ) = ( LIdeal ‘ 𝐿 ) ∧ ( RSpan ‘ 𝐾 ) = ( RSpan ‘ 𝐿 ) ) ) |