This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ideal contains 1 iff it is the unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Wolf Lammen, 6-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lidlcl.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| lidlcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| lidl1el.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | lidl1el | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( 1 ∈ 𝐼 ↔ 𝐼 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlcl.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| 2 | lidlcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | lidl1el.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 4 | 2 1 | lidlss | ⊢ ( 𝐼 ∈ 𝑈 → 𝐼 ⊆ 𝐵 ) |
| 5 | 4 | ad2antlr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ 1 ∈ 𝐼 ) → 𝐼 ⊆ 𝐵 ) |
| 6 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 7 | 2 6 3 | ringridm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 ( .r ‘ 𝑅 ) 1 ) = 𝑎 ) |
| 8 | 7 | ad2ant2rl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ ( 1 ∈ 𝐼 ∧ 𝑎 ∈ 𝐵 ) ) → ( 𝑎 ( .r ‘ 𝑅 ) 1 ) = 𝑎 ) |
| 9 | 1 2 6 | lidlmcl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 1 ∈ 𝐼 ) ) → ( 𝑎 ( .r ‘ 𝑅 ) 1 ) ∈ 𝐼 ) |
| 10 | 9 | ancom2s | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ ( 1 ∈ 𝐼 ∧ 𝑎 ∈ 𝐵 ) ) → ( 𝑎 ( .r ‘ 𝑅 ) 1 ) ∈ 𝐼 ) |
| 11 | 8 10 | eqeltrrd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ ( 1 ∈ 𝐼 ∧ 𝑎 ∈ 𝐵 ) ) → 𝑎 ∈ 𝐼 ) |
| 12 | 11 | expr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ 1 ∈ 𝐼 ) → ( 𝑎 ∈ 𝐵 → 𝑎 ∈ 𝐼 ) ) |
| 13 | 12 | ssrdv | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ 1 ∈ 𝐼 ) → 𝐵 ⊆ 𝐼 ) |
| 14 | 5 13 | eqssd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ 1 ∈ 𝐼 ) → 𝐼 = 𝐵 ) |
| 15 | 14 | ex | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( 1 ∈ 𝐼 → 𝐼 = 𝐵 ) ) |
| 16 | 2 3 | ringidcl | ⊢ ( 𝑅 ∈ Ring → 1 ∈ 𝐵 ) |
| 17 | 16 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 1 ∈ 𝐵 ) |
| 18 | eleq2 | ⊢ ( 𝐼 = 𝐵 → ( 1 ∈ 𝐼 ↔ 1 ∈ 𝐵 ) ) | |
| 19 | 17 18 | syl5ibrcom | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( 𝐼 = 𝐵 → 1 ∈ 𝐼 ) ) |
| 20 | 15 19 | impbid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( 1 ∈ 𝐼 ↔ 𝐼 = 𝐵 ) ) |