This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Create a direct product by finding subgroups inside each factor of another direct product. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdss.1 | |- ( ph -> G dom DProd T ) |
|
| dprdss.2 | |- ( ph -> dom T = I ) |
||
| dprdss.3 | |- ( ph -> S : I --> ( SubGrp ` G ) ) |
||
| dprdss.4 | |- ( ( ph /\ k e. I ) -> ( S ` k ) C_ ( T ` k ) ) |
||
| Assertion | dprdss | |- ( ph -> ( G dom DProd S /\ ( G DProd S ) C_ ( G DProd T ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdss.1 | |- ( ph -> G dom DProd T ) |
|
| 2 | dprdss.2 | |- ( ph -> dom T = I ) |
|
| 3 | dprdss.3 | |- ( ph -> S : I --> ( SubGrp ` G ) ) |
|
| 4 | dprdss.4 | |- ( ( ph /\ k e. I ) -> ( S ` k ) C_ ( T ` k ) ) |
|
| 5 | eqid | |- ( Cntz ` G ) = ( Cntz ` G ) |
|
| 6 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 7 | eqid | |- ( mrCls ` ( SubGrp ` G ) ) = ( mrCls ` ( SubGrp ` G ) ) |
|
| 8 | dprdgrp | |- ( G dom DProd T -> G e. Grp ) |
|
| 9 | 1 8 | syl | |- ( ph -> G e. Grp ) |
| 10 | 1 2 | dprddomcld | |- ( ph -> I e. _V ) |
| 11 | 4 | ralrimiva | |- ( ph -> A. k e. I ( S ` k ) C_ ( T ` k ) ) |
| 12 | fveq2 | |- ( k = x -> ( S ` k ) = ( S ` x ) ) |
|
| 13 | fveq2 | |- ( k = x -> ( T ` k ) = ( T ` x ) ) |
|
| 14 | 12 13 | sseq12d | |- ( k = x -> ( ( S ` k ) C_ ( T ` k ) <-> ( S ` x ) C_ ( T ` x ) ) ) |
| 15 | 14 | rspcv | |- ( x e. I -> ( A. k e. I ( S ` k ) C_ ( T ` k ) -> ( S ` x ) C_ ( T ` x ) ) ) |
| 16 | 11 15 | mpan9 | |- ( ( ph /\ x e. I ) -> ( S ` x ) C_ ( T ` x ) ) |
| 17 | 16 | 3ad2antr1 | |- ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> ( S ` x ) C_ ( T ` x ) ) |
| 18 | 1 | adantr | |- ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> G dom DProd T ) |
| 19 | 2 | adantr | |- ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> dom T = I ) |
| 20 | simpr1 | |- ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> x e. I ) |
|
| 21 | simpr2 | |- ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> y e. I ) |
|
| 22 | simpr3 | |- ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> x =/= y ) |
|
| 23 | 18 19 20 21 22 5 | dprdcntz | |- ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> ( T ` x ) C_ ( ( Cntz ` G ) ` ( T ` y ) ) ) |
| 24 | 1 2 | dprdf2 | |- ( ph -> T : I --> ( SubGrp ` G ) ) |
| 25 | 24 | adantr | |- ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> T : I --> ( SubGrp ` G ) ) |
| 26 | 25 21 | ffvelcdmd | |- ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> ( T ` y ) e. ( SubGrp ` G ) ) |
| 27 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 28 | 27 | subgss | |- ( ( T ` y ) e. ( SubGrp ` G ) -> ( T ` y ) C_ ( Base ` G ) ) |
| 29 | 26 28 | syl | |- ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> ( T ` y ) C_ ( Base ` G ) ) |
| 30 | fveq2 | |- ( k = y -> ( S ` k ) = ( S ` y ) ) |
|
| 31 | fveq2 | |- ( k = y -> ( T ` k ) = ( T ` y ) ) |
|
| 32 | 30 31 | sseq12d | |- ( k = y -> ( ( S ` k ) C_ ( T ` k ) <-> ( S ` y ) C_ ( T ` y ) ) ) |
| 33 | 11 | adantr | |- ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> A. k e. I ( S ` k ) C_ ( T ` k ) ) |
| 34 | 32 33 21 | rspcdva | |- ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> ( S ` y ) C_ ( T ` y ) ) |
| 35 | 27 5 | cntz2ss | |- ( ( ( T ` y ) C_ ( Base ` G ) /\ ( S ` y ) C_ ( T ` y ) ) -> ( ( Cntz ` G ) ` ( T ` y ) ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) ) |
| 36 | 29 34 35 | syl2anc | |- ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> ( ( Cntz ` G ) ` ( T ` y ) ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) ) |
| 37 | 23 36 | sstrd | |- ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> ( T ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) ) |
| 38 | 17 37 | sstrd | |- ( ( ph /\ ( x e. I /\ y e. I /\ x =/= y ) ) -> ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) ) |
| 39 | 9 | adantr | |- ( ( ph /\ x e. I ) -> G e. Grp ) |
| 40 | 27 | subgacs | |- ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) ) |
| 41 | acsmre | |- ( ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
|
| 42 | 39 40 41 | 3syl | |- ( ( ph /\ x e. I ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
| 43 | difss | |- ( I \ { x } ) C_ I |
|
| 44 | 11 | adantr | |- ( ( ph /\ x e. I ) -> A. k e. I ( S ` k ) C_ ( T ` k ) ) |
| 45 | ssralv | |- ( ( I \ { x } ) C_ I -> ( A. k e. I ( S ` k ) C_ ( T ` k ) -> A. k e. ( I \ { x } ) ( S ` k ) C_ ( T ` k ) ) ) |
|
| 46 | 43 44 45 | mpsyl | |- ( ( ph /\ x e. I ) -> A. k e. ( I \ { x } ) ( S ` k ) C_ ( T ` k ) ) |
| 47 | ss2iun | |- ( A. k e. ( I \ { x } ) ( S ` k ) C_ ( T ` k ) -> U_ k e. ( I \ { x } ) ( S ` k ) C_ U_ k e. ( I \ { x } ) ( T ` k ) ) |
|
| 48 | 46 47 | syl | |- ( ( ph /\ x e. I ) -> U_ k e. ( I \ { x } ) ( S ` k ) C_ U_ k e. ( I \ { x } ) ( T ` k ) ) |
| 49 | 3 | adantr | |- ( ( ph /\ x e. I ) -> S : I --> ( SubGrp ` G ) ) |
| 50 | ffun | |- ( S : I --> ( SubGrp ` G ) -> Fun S ) |
|
| 51 | funiunfv | |- ( Fun S -> U_ k e. ( I \ { x } ) ( S ` k ) = U. ( S " ( I \ { x } ) ) ) |
|
| 52 | 49 50 51 | 3syl | |- ( ( ph /\ x e. I ) -> U_ k e. ( I \ { x } ) ( S ` k ) = U. ( S " ( I \ { x } ) ) ) |
| 53 | 24 | adantr | |- ( ( ph /\ x e. I ) -> T : I --> ( SubGrp ` G ) ) |
| 54 | ffun | |- ( T : I --> ( SubGrp ` G ) -> Fun T ) |
|
| 55 | funiunfv | |- ( Fun T -> U_ k e. ( I \ { x } ) ( T ` k ) = U. ( T " ( I \ { x } ) ) ) |
|
| 56 | 53 54 55 | 3syl | |- ( ( ph /\ x e. I ) -> U_ k e. ( I \ { x } ) ( T ` k ) = U. ( T " ( I \ { x } ) ) ) |
| 57 | 48 52 56 | 3sstr3d | |- ( ( ph /\ x e. I ) -> U. ( S " ( I \ { x } ) ) C_ U. ( T " ( I \ { x } ) ) ) |
| 58 | imassrn | |- ( T " ( I \ { x } ) ) C_ ran T |
|
| 59 | 53 | frnd | |- ( ( ph /\ x e. I ) -> ran T C_ ( SubGrp ` G ) ) |
| 60 | mresspw | |- ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) -> ( SubGrp ` G ) C_ ~P ( Base ` G ) ) |
|
| 61 | 42 60 | syl | |- ( ( ph /\ x e. I ) -> ( SubGrp ` G ) C_ ~P ( Base ` G ) ) |
| 62 | 59 61 | sstrd | |- ( ( ph /\ x e. I ) -> ran T C_ ~P ( Base ` G ) ) |
| 63 | 58 62 | sstrid | |- ( ( ph /\ x e. I ) -> ( T " ( I \ { x } ) ) C_ ~P ( Base ` G ) ) |
| 64 | sspwuni | |- ( ( T " ( I \ { x } ) ) C_ ~P ( Base ` G ) <-> U. ( T " ( I \ { x } ) ) C_ ( Base ` G ) ) |
|
| 65 | 63 64 | sylib | |- ( ( ph /\ x e. I ) -> U. ( T " ( I \ { x } ) ) C_ ( Base ` G ) ) |
| 66 | 42 7 57 65 | mrcssd | |- ( ( ph /\ x e. I ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) C_ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( T " ( I \ { x } ) ) ) ) |
| 67 | ss2in | |- ( ( ( S ` x ) C_ ( T ` x ) /\ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) C_ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( T " ( I \ { x } ) ) ) ) -> ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) C_ ( ( T ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( T " ( I \ { x } ) ) ) ) ) |
|
| 68 | 16 66 67 | syl2anc | |- ( ( ph /\ x e. I ) -> ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) C_ ( ( T ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( T " ( I \ { x } ) ) ) ) ) |
| 69 | 1 | adantr | |- ( ( ph /\ x e. I ) -> G dom DProd T ) |
| 70 | 2 | adantr | |- ( ( ph /\ x e. I ) -> dom T = I ) |
| 71 | simpr | |- ( ( ph /\ x e. I ) -> x e. I ) |
|
| 72 | 69 70 71 6 7 | dprddisj | |- ( ( ph /\ x e. I ) -> ( ( T ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( T " ( I \ { x } ) ) ) ) = { ( 0g ` G ) } ) |
| 73 | 68 72 | sseqtrd | |- ( ( ph /\ x e. I ) -> ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) C_ { ( 0g ` G ) } ) |
| 74 | 5 6 7 9 10 3 38 73 | dmdprdd | |- ( ph -> G dom DProd S ) |
| 75 | 1 | a1d | |- ( ph -> ( G dom DProd S -> G dom DProd T ) ) |
| 76 | ss2ixp | |- ( A. k e. I ( S ` k ) C_ ( T ` k ) -> X_ k e. I ( S ` k ) C_ X_ k e. I ( T ` k ) ) |
|
| 77 | 11 76 | syl | |- ( ph -> X_ k e. I ( S ` k ) C_ X_ k e. I ( T ` k ) ) |
| 78 | rabss2 | |- ( X_ k e. I ( S ` k ) C_ X_ k e. I ( T ` k ) -> { h e. X_ k e. I ( S ` k ) | h finSupp ( 0g ` G ) } C_ { h e. X_ k e. I ( T ` k ) | h finSupp ( 0g ` G ) } ) |
|
| 79 | ssrexv | |- ( { h e. X_ k e. I ( S ` k ) | h finSupp ( 0g ` G ) } C_ { h e. X_ k e. I ( T ` k ) | h finSupp ( 0g ` G ) } -> ( E. f e. { h e. X_ k e. I ( S ` k ) | h finSupp ( 0g ` G ) } a = ( G gsum f ) -> E. f e. { h e. X_ k e. I ( T ` k ) | h finSupp ( 0g ` G ) } a = ( G gsum f ) ) ) |
|
| 80 | 77 78 79 | 3syl | |- ( ph -> ( E. f e. { h e. X_ k e. I ( S ` k ) | h finSupp ( 0g ` G ) } a = ( G gsum f ) -> E. f e. { h e. X_ k e. I ( T ` k ) | h finSupp ( 0g ` G ) } a = ( G gsum f ) ) ) |
| 81 | 75 80 | anim12d | |- ( ph -> ( ( G dom DProd S /\ E. f e. { h e. X_ k e. I ( S ` k ) | h finSupp ( 0g ` G ) } a = ( G gsum f ) ) -> ( G dom DProd T /\ E. f e. { h e. X_ k e. I ( T ` k ) | h finSupp ( 0g ` G ) } a = ( G gsum f ) ) ) ) |
| 82 | fdm | |- ( S : I --> ( SubGrp ` G ) -> dom S = I ) |
|
| 83 | eqid | |- { h e. X_ k e. I ( S ` k ) | h finSupp ( 0g ` G ) } = { h e. X_ k e. I ( S ` k ) | h finSupp ( 0g ` G ) } |
|
| 84 | 6 83 | eldprd | |- ( dom S = I -> ( a e. ( G DProd S ) <-> ( G dom DProd S /\ E. f e. { h e. X_ k e. I ( S ` k ) | h finSupp ( 0g ` G ) } a = ( G gsum f ) ) ) ) |
| 85 | 3 82 84 | 3syl | |- ( ph -> ( a e. ( G DProd S ) <-> ( G dom DProd S /\ E. f e. { h e. X_ k e. I ( S ` k ) | h finSupp ( 0g ` G ) } a = ( G gsum f ) ) ) ) |
| 86 | eqid | |- { h e. X_ k e. I ( T ` k ) | h finSupp ( 0g ` G ) } = { h e. X_ k e. I ( T ` k ) | h finSupp ( 0g ` G ) } |
|
| 87 | 6 86 | eldprd | |- ( dom T = I -> ( a e. ( G DProd T ) <-> ( G dom DProd T /\ E. f e. { h e. X_ k e. I ( T ` k ) | h finSupp ( 0g ` G ) } a = ( G gsum f ) ) ) ) |
| 88 | 2 87 | syl | |- ( ph -> ( a e. ( G DProd T ) <-> ( G dom DProd T /\ E. f e. { h e. X_ k e. I ( T ` k ) | h finSupp ( 0g ` G ) } a = ( G gsum f ) ) ) ) |
| 89 | 81 85 88 | 3imtr4d | |- ( ph -> ( a e. ( G DProd S ) -> a e. ( G DProd T ) ) ) |
| 90 | 89 | ssrdv | |- ( ph -> ( G DProd S ) C_ ( G DProd T ) ) |
| 91 | 74 90 | jca | |- ( ph -> ( G dom DProd S /\ ( G DProd S ) C_ ( G DProd T ) ) ) |