This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dprdsn | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐺 dom DProd { 〈 𝐴 , 𝑆 〉 } ∧ ( 𝐺 DProd { 〈 𝐴 , 𝑆 〉 } ) = 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | |
| 4 | subgrcl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐺 ∈ Grp ) |
| 6 | snex | ⊢ { 𝐴 } ∈ V | |
| 7 | 6 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → { 𝐴 } ∈ V ) |
| 8 | f1osng | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → { 〈 𝐴 , 𝑆 〉 } : { 𝐴 } –1-1-onto→ { 𝑆 } ) | |
| 9 | f1of | ⊢ ( { 〈 𝐴 , 𝑆 〉 } : { 𝐴 } –1-1-onto→ { 𝑆 } → { 〈 𝐴 , 𝑆 〉 } : { 𝐴 } ⟶ { 𝑆 } ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → { 〈 𝐴 , 𝑆 〉 } : { 𝐴 } ⟶ { 𝑆 } ) |
| 11 | simpr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 12 | 11 | snssd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → { 𝑆 } ⊆ ( SubGrp ‘ 𝐺 ) ) |
| 13 | 10 12 | fssd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → { 〈 𝐴 , 𝑆 〉 } : { 𝐴 } ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 14 | simpr1 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐴 } ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 ∈ { 𝐴 } ) | |
| 15 | elsni | ⊢ ( 𝑥 ∈ { 𝐴 } → 𝑥 = 𝐴 ) | |
| 16 | 14 15 | syl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐴 } ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 = 𝐴 ) |
| 17 | simpr2 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐴 } ∧ 𝑥 ≠ 𝑦 ) ) → 𝑦 ∈ { 𝐴 } ) | |
| 18 | elsni | ⊢ ( 𝑦 ∈ { 𝐴 } → 𝑦 = 𝐴 ) | |
| 19 | 17 18 | syl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐴 } ∧ 𝑥 ≠ 𝑦 ) ) → 𝑦 = 𝐴 ) |
| 20 | 16 19 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐴 } ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 = 𝑦 ) |
| 21 | simpr3 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐴 } ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 ≠ 𝑦 ) | |
| 22 | 20 21 | pm2.21ddne | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ { 𝐴 } ∧ 𝑥 ≠ 𝑦 ) ) → ( { 〈 𝐴 , 𝑆 〉 } ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( { 〈 𝐴 , 𝑆 〉 } ‘ 𝑦 ) ) ) |
| 23 | 5 | adantr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → 𝐺 ∈ Grp ) |
| 24 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 25 | 24 | subgacs | ⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) ) |
| 26 | acsmre | ⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) | |
| 27 | 23 25 26 | 3syl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
| 28 | 15 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → 𝑥 = 𝐴 ) |
| 29 | 28 | sneqd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → { 𝑥 } = { 𝐴 } ) |
| 30 | 29 | difeq2d | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → ( { 𝐴 } ∖ { 𝑥 } ) = ( { 𝐴 } ∖ { 𝐴 } ) ) |
| 31 | difid | ⊢ ( { 𝐴 } ∖ { 𝐴 } ) = ∅ | |
| 32 | 30 31 | eqtrdi | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → ( { 𝐴 } ∖ { 𝑥 } ) = ∅ ) |
| 33 | 32 | imaeq2d | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → ( { 〈 𝐴 , 𝑆 〉 } “ ( { 𝐴 } ∖ { 𝑥 } ) ) = ( { 〈 𝐴 , 𝑆 〉 } “ ∅ ) ) |
| 34 | ima0 | ⊢ ( { 〈 𝐴 , 𝑆 〉 } “ ∅ ) = ∅ | |
| 35 | 33 34 | eqtrdi | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → ( { 〈 𝐴 , 𝑆 〉 } “ ( { 𝐴 } ∖ { 𝑥 } ) ) = ∅ ) |
| 36 | 35 | unieqd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → ∪ ( { 〈 𝐴 , 𝑆 〉 } “ ( { 𝐴 } ∖ { 𝑥 } ) ) = ∪ ∅ ) |
| 37 | uni0 | ⊢ ∪ ∅ = ∅ | |
| 38 | 36 37 | eqtrdi | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → ∪ ( { 〈 𝐴 , 𝑆 〉 } “ ( { 𝐴 } ∖ { 𝑥 } ) ) = ∅ ) |
| 39 | 0ss | ⊢ ∅ ⊆ { ( 0g ‘ 𝐺 ) } | |
| 40 | 39 | a1i | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → ∅ ⊆ { ( 0g ‘ 𝐺 ) } ) |
| 41 | 38 40 | eqsstrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → ∪ ( { 〈 𝐴 , 𝑆 〉 } “ ( { 𝐴 } ∖ { 𝑥 } ) ) ⊆ { ( 0g ‘ 𝐺 ) } ) |
| 42 | 2 | 0subg | ⊢ ( 𝐺 ∈ Grp → { ( 0g ‘ 𝐺 ) } ∈ ( SubGrp ‘ 𝐺 ) ) |
| 43 | 23 42 | syl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → { ( 0g ‘ 𝐺 ) } ∈ ( SubGrp ‘ 𝐺 ) ) |
| 44 | 3 | mrcsscl | ⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ ∪ ( { 〈 𝐴 , 𝑆 〉 } “ ( { 𝐴 } ∖ { 𝑥 } ) ) ⊆ { ( 0g ‘ 𝐺 ) } ∧ { ( 0g ‘ 𝐺 ) } ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( { 〈 𝐴 , 𝑆 〉 } “ ( { 𝐴 } ∖ { 𝑥 } ) ) ) ⊆ { ( 0g ‘ 𝐺 ) } ) |
| 45 | 27 41 43 44 | syl3anc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( { 〈 𝐴 , 𝑆 〉 } “ ( { 𝐴 } ∖ { 𝑥 } ) ) ) ⊆ { ( 0g ‘ 𝐺 ) } ) |
| 46 | 2 | subg0cl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
| 47 | 46 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
| 48 | 15 | fveq2d | ⊢ ( 𝑥 ∈ { 𝐴 } → ( { 〈 𝐴 , 𝑆 〉 } ‘ 𝑥 ) = ( { 〈 𝐴 , 𝑆 〉 } ‘ 𝐴 ) ) |
| 49 | fvsng | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( { 〈 𝐴 , 𝑆 〉 } ‘ 𝐴 ) = 𝑆 ) | |
| 50 | 48 49 | sylan9eqr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → ( { 〈 𝐴 , 𝑆 〉 } ‘ 𝑥 ) = 𝑆 ) |
| 51 | 47 50 | eleqtrrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → ( 0g ‘ 𝐺 ) ∈ ( { 〈 𝐴 , 𝑆 〉 } ‘ 𝑥 ) ) |
| 52 | 51 | snssd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → { ( 0g ‘ 𝐺 ) } ⊆ ( { 〈 𝐴 , 𝑆 〉 } ‘ 𝑥 ) ) |
| 53 | 45 52 | sstrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( { 〈 𝐴 , 𝑆 〉 } “ ( { 𝐴 } ∖ { 𝑥 } ) ) ) ⊆ ( { 〈 𝐴 , 𝑆 〉 } ‘ 𝑥 ) ) |
| 54 | sseqin2 | ⊢ ( ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( { 〈 𝐴 , 𝑆 〉 } “ ( { 𝐴 } ∖ { 𝑥 } ) ) ) ⊆ ( { 〈 𝐴 , 𝑆 〉 } ‘ 𝑥 ) ↔ ( ( { 〈 𝐴 , 𝑆 〉 } ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( { 〈 𝐴 , 𝑆 〉 } “ ( { 𝐴 } ∖ { 𝑥 } ) ) ) ) = ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( { 〈 𝐴 , 𝑆 〉 } “ ( { 𝐴 } ∖ { 𝑥 } ) ) ) ) | |
| 55 | 53 54 | sylib | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → ( ( { 〈 𝐴 , 𝑆 〉 } ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( { 〈 𝐴 , 𝑆 〉 } “ ( { 𝐴 } ∖ { 𝑥 } ) ) ) ) = ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( { 〈 𝐴 , 𝑆 〉 } “ ( { 𝐴 } ∖ { 𝑥 } ) ) ) ) |
| 56 | 55 45 | eqsstrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ { 𝐴 } ) → ( ( { 〈 𝐴 , 𝑆 〉 } ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( { 〈 𝐴 , 𝑆 〉 } “ ( { 𝐴 } ∖ { 𝑥 } ) ) ) ) ⊆ { ( 0g ‘ 𝐺 ) } ) |
| 57 | 1 2 3 5 7 13 22 56 | dmdprdd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐺 dom DProd { 〈 𝐴 , 𝑆 〉 } ) |
| 58 | 3 | dprdspan | ⊢ ( 𝐺 dom DProd { 〈 𝐴 , 𝑆 〉 } → ( 𝐺 DProd { 〈 𝐴 , 𝑆 〉 } ) = ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran { 〈 𝐴 , 𝑆 〉 } ) ) |
| 59 | 57 58 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐺 DProd { 〈 𝐴 , 𝑆 〉 } ) = ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran { 〈 𝐴 , 𝑆 〉 } ) ) |
| 60 | rnsnopg | ⊢ ( 𝐴 ∈ 𝑉 → ran { 〈 𝐴 , 𝑆 〉 } = { 𝑆 } ) | |
| 61 | 60 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ran { 〈 𝐴 , 𝑆 〉 } = { 𝑆 } ) |
| 62 | 61 | unieqd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ∪ ran { 〈 𝐴 , 𝑆 〉 } = ∪ { 𝑆 } ) |
| 63 | unisng | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ∪ { 𝑆 } = 𝑆 ) | |
| 64 | 63 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ∪ { 𝑆 } = 𝑆 ) |
| 65 | 62 64 | eqtrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ∪ ran { 〈 𝐴 , 𝑆 〉 } = 𝑆 ) |
| 66 | 65 | fveq2d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran { 〈 𝐴 , 𝑆 〉 } ) = ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ 𝑆 ) ) |
| 67 | 5 25 26 | 3syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
| 68 | 3 | mrcid | ⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ 𝑆 ) = 𝑆 ) |
| 69 | 67 68 | sylancom | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ 𝑆 ) = 𝑆 ) |
| 70 | 66 69 | eqtrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ran { 〈 𝐴 , 𝑆 〉 } ) = 𝑆 ) |
| 71 | 59 70 | eqtrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐺 DProd { 〈 𝐴 , 𝑆 〉 } ) = 𝑆 ) |
| 72 | 57 71 | jca | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐺 dom DProd { 〈 𝐴 , 𝑆 〉 } ∧ ( 𝐺 DProd { 〈 𝐴 , 𝑆 〉 } ) = 𝑆 ) ) |