This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any partition of omega into two pieces (which may be disjoint) contains an infinite subset. (Contributed by Mario Carneiro, 11-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cdainflem | ⊢ ( ( 𝐴 ∪ 𝐵 ) ≈ ω → ( 𝐴 ≈ ω ∨ 𝐵 ≈ ω ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unfi2 | ⊢ ( ( 𝐴 ≺ ω ∧ 𝐵 ≺ ω ) → ( 𝐴 ∪ 𝐵 ) ≺ ω ) | |
| 2 | sdomnen | ⊢ ( ( 𝐴 ∪ 𝐵 ) ≺ ω → ¬ ( 𝐴 ∪ 𝐵 ) ≈ ω ) | |
| 3 | 1 2 | syl | ⊢ ( ( 𝐴 ≺ ω ∧ 𝐵 ≺ ω ) → ¬ ( 𝐴 ∪ 𝐵 ) ≈ ω ) |
| 4 | 3 | con2i | ⊢ ( ( 𝐴 ∪ 𝐵 ) ≈ ω → ¬ ( 𝐴 ≺ ω ∧ 𝐵 ≺ ω ) ) |
| 5 | ianor | ⊢ ( ¬ ( 𝐴 ≺ ω ∧ 𝐵 ≺ ω ) ↔ ( ¬ 𝐴 ≺ ω ∨ ¬ 𝐵 ≺ ω ) ) | |
| 6 | relen | ⊢ Rel ≈ | |
| 7 | 6 | brrelex1i | ⊢ ( ( 𝐴 ∪ 𝐵 ) ≈ ω → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
| 8 | ssun1 | ⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 9 | ssdomg | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ V → ( 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) → 𝐴 ≼ ( 𝐴 ∪ 𝐵 ) ) ) | |
| 10 | 7 8 9 | mpisyl | ⊢ ( ( 𝐴 ∪ 𝐵 ) ≈ ω → 𝐴 ≼ ( 𝐴 ∪ 𝐵 ) ) |
| 11 | domentr | ⊢ ( ( 𝐴 ≼ ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∪ 𝐵 ) ≈ ω ) → 𝐴 ≼ ω ) | |
| 12 | 10 11 | mpancom | ⊢ ( ( 𝐴 ∪ 𝐵 ) ≈ ω → 𝐴 ≼ ω ) |
| 13 | 12 | anim1i | ⊢ ( ( ( 𝐴 ∪ 𝐵 ) ≈ ω ∧ ¬ 𝐴 ≺ ω ) → ( 𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω ) ) |
| 14 | bren2 | ⊢ ( 𝐴 ≈ ω ↔ ( 𝐴 ≼ ω ∧ ¬ 𝐴 ≺ ω ) ) | |
| 15 | 13 14 | sylibr | ⊢ ( ( ( 𝐴 ∪ 𝐵 ) ≈ ω ∧ ¬ 𝐴 ≺ ω ) → 𝐴 ≈ ω ) |
| 16 | 15 | ex | ⊢ ( ( 𝐴 ∪ 𝐵 ) ≈ ω → ( ¬ 𝐴 ≺ ω → 𝐴 ≈ ω ) ) |
| 17 | ssun2 | ⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 18 | ssdomg | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ V → ( 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) → 𝐵 ≼ ( 𝐴 ∪ 𝐵 ) ) ) | |
| 19 | 7 17 18 | mpisyl | ⊢ ( ( 𝐴 ∪ 𝐵 ) ≈ ω → 𝐵 ≼ ( 𝐴 ∪ 𝐵 ) ) |
| 20 | domentr | ⊢ ( ( 𝐵 ≼ ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∪ 𝐵 ) ≈ ω ) → 𝐵 ≼ ω ) | |
| 21 | 19 20 | mpancom | ⊢ ( ( 𝐴 ∪ 𝐵 ) ≈ ω → 𝐵 ≼ ω ) |
| 22 | 21 | anim1i | ⊢ ( ( ( 𝐴 ∪ 𝐵 ) ≈ ω ∧ ¬ 𝐵 ≺ ω ) → ( 𝐵 ≼ ω ∧ ¬ 𝐵 ≺ ω ) ) |
| 23 | bren2 | ⊢ ( 𝐵 ≈ ω ↔ ( 𝐵 ≼ ω ∧ ¬ 𝐵 ≺ ω ) ) | |
| 24 | 22 23 | sylibr | ⊢ ( ( ( 𝐴 ∪ 𝐵 ) ≈ ω ∧ ¬ 𝐵 ≺ ω ) → 𝐵 ≈ ω ) |
| 25 | 24 | ex | ⊢ ( ( 𝐴 ∪ 𝐵 ) ≈ ω → ( ¬ 𝐵 ≺ ω → 𝐵 ≈ ω ) ) |
| 26 | 16 25 | orim12d | ⊢ ( ( 𝐴 ∪ 𝐵 ) ≈ ω → ( ( ¬ 𝐴 ≺ ω ∨ ¬ 𝐵 ≺ ω ) → ( 𝐴 ≈ ω ∨ 𝐵 ≈ ω ) ) ) |
| 27 | 5 26 | biimtrid | ⊢ ( ( 𝐴 ∪ 𝐵 ) ≈ ω → ( ¬ ( 𝐴 ≺ ω ∧ 𝐵 ≺ ω ) → ( 𝐴 ≈ ω ∨ 𝐵 ≈ ω ) ) ) |
| 28 | 4 27 | mpd | ⊢ ( ( 𝐴 ∪ 𝐵 ) ≈ ω → ( 𝐴 ≈ ω ∨ 𝐵 ≈ ω ) ) |