This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is infinite iff the cardinal sum with itself is infinite. (Contributed by NM, 22-Oct-2004) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djuinf | |- ( _om ~<_ A <-> _om ~<_ ( A |_| A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom | |- Rel ~<_ |
|
| 2 | 1 | brrelex2i | |- ( _om ~<_ A -> A e. _V ) |
| 3 | djudoml | |- ( ( A e. _V /\ A e. _V ) -> A ~<_ ( A |_| A ) ) |
|
| 4 | 2 2 3 | syl2anc | |- ( _om ~<_ A -> A ~<_ ( A |_| A ) ) |
| 5 | domtr | |- ( ( _om ~<_ A /\ A ~<_ ( A |_| A ) ) -> _om ~<_ ( A |_| A ) ) |
|
| 6 | 4 5 | mpdan | |- ( _om ~<_ A -> _om ~<_ ( A |_| A ) ) |
| 7 | 1 | brrelex2i | |- ( _om ~<_ ( A |_| A ) -> ( A |_| A ) e. _V ) |
| 8 | anidm | |- ( ( A e. _V /\ A e. _V ) <-> A e. _V ) |
|
| 9 | djuexb | |- ( ( A e. _V /\ A e. _V ) <-> ( A |_| A ) e. _V ) |
|
| 10 | 8 9 | bitr3i | |- ( A e. _V <-> ( A |_| A ) e. _V ) |
| 11 | 7 10 | sylibr | |- ( _om ~<_ ( A |_| A ) -> A e. _V ) |
| 12 | domeng | |- ( ( A |_| A ) e. _V -> ( _om ~<_ ( A |_| A ) <-> E. x ( _om ~~ x /\ x C_ ( A |_| A ) ) ) ) |
|
| 13 | 7 12 | syl | |- ( _om ~<_ ( A |_| A ) -> ( _om ~<_ ( A |_| A ) <-> E. x ( _om ~~ x /\ x C_ ( A |_| A ) ) ) ) |
| 14 | 13 | ibi | |- ( _om ~<_ ( A |_| A ) -> E. x ( _om ~~ x /\ x C_ ( A |_| A ) ) ) |
| 15 | indi | |- ( x i^i ( ( { (/) } X. A ) u. ( { 1o } X. A ) ) ) = ( ( x i^i ( { (/) } X. A ) ) u. ( x i^i ( { 1o } X. A ) ) ) |
|
| 16 | simpr | |- ( ( _om ~~ x /\ x C_ ( A |_| A ) ) -> x C_ ( A |_| A ) ) |
|
| 17 | df-dju | |- ( A |_| A ) = ( ( { (/) } X. A ) u. ( { 1o } X. A ) ) |
|
| 18 | 16 17 | sseqtrdi | |- ( ( _om ~~ x /\ x C_ ( A |_| A ) ) -> x C_ ( ( { (/) } X. A ) u. ( { 1o } X. A ) ) ) |
| 19 | dfss2 | |- ( x C_ ( ( { (/) } X. A ) u. ( { 1o } X. A ) ) <-> ( x i^i ( ( { (/) } X. A ) u. ( { 1o } X. A ) ) ) = x ) |
|
| 20 | 18 19 | sylib | |- ( ( _om ~~ x /\ x C_ ( A |_| A ) ) -> ( x i^i ( ( { (/) } X. A ) u. ( { 1o } X. A ) ) ) = x ) |
| 21 | 15 20 | eqtr3id | |- ( ( _om ~~ x /\ x C_ ( A |_| A ) ) -> ( ( x i^i ( { (/) } X. A ) ) u. ( x i^i ( { 1o } X. A ) ) ) = x ) |
| 22 | ensym | |- ( _om ~~ x -> x ~~ _om ) |
|
| 23 | 22 | adantr | |- ( ( _om ~~ x /\ x C_ ( A |_| A ) ) -> x ~~ _om ) |
| 24 | 21 23 | eqbrtrd | |- ( ( _om ~~ x /\ x C_ ( A |_| A ) ) -> ( ( x i^i ( { (/) } X. A ) ) u. ( x i^i ( { 1o } X. A ) ) ) ~~ _om ) |
| 25 | cdainflem | |- ( ( ( x i^i ( { (/) } X. A ) ) u. ( x i^i ( { 1o } X. A ) ) ) ~~ _om -> ( ( x i^i ( { (/) } X. A ) ) ~~ _om \/ ( x i^i ( { 1o } X. A ) ) ~~ _om ) ) |
|
| 26 | snex | |- { (/) } e. _V |
|
| 27 | xpexg | |- ( ( { (/) } e. _V /\ A e. _V ) -> ( { (/) } X. A ) e. _V ) |
|
| 28 | 26 27 | mpan | |- ( A e. _V -> ( { (/) } X. A ) e. _V ) |
| 29 | inss2 | |- ( x i^i ( { (/) } X. A ) ) C_ ( { (/) } X. A ) |
|
| 30 | ssdomg | |- ( ( { (/) } X. A ) e. _V -> ( ( x i^i ( { (/) } X. A ) ) C_ ( { (/) } X. A ) -> ( x i^i ( { (/) } X. A ) ) ~<_ ( { (/) } X. A ) ) ) |
|
| 31 | 28 29 30 | mpisyl | |- ( A e. _V -> ( x i^i ( { (/) } X. A ) ) ~<_ ( { (/) } X. A ) ) |
| 32 | 0ex | |- (/) e. _V |
|
| 33 | xpsnen2g | |- ( ( (/) e. _V /\ A e. _V ) -> ( { (/) } X. A ) ~~ A ) |
|
| 34 | 32 33 | mpan | |- ( A e. _V -> ( { (/) } X. A ) ~~ A ) |
| 35 | domentr | |- ( ( ( x i^i ( { (/) } X. A ) ) ~<_ ( { (/) } X. A ) /\ ( { (/) } X. A ) ~~ A ) -> ( x i^i ( { (/) } X. A ) ) ~<_ A ) |
|
| 36 | 31 34 35 | syl2anc | |- ( A e. _V -> ( x i^i ( { (/) } X. A ) ) ~<_ A ) |
| 37 | domen1 | |- ( ( x i^i ( { (/) } X. A ) ) ~~ _om -> ( ( x i^i ( { (/) } X. A ) ) ~<_ A <-> _om ~<_ A ) ) |
|
| 38 | 36 37 | syl5ibcom | |- ( A e. _V -> ( ( x i^i ( { (/) } X. A ) ) ~~ _om -> _om ~<_ A ) ) |
| 39 | snex | |- { 1o } e. _V |
|
| 40 | xpexg | |- ( ( { 1o } e. _V /\ A e. _V ) -> ( { 1o } X. A ) e. _V ) |
|
| 41 | 39 40 | mpan | |- ( A e. _V -> ( { 1o } X. A ) e. _V ) |
| 42 | inss2 | |- ( x i^i ( { 1o } X. A ) ) C_ ( { 1o } X. A ) |
|
| 43 | ssdomg | |- ( ( { 1o } X. A ) e. _V -> ( ( x i^i ( { 1o } X. A ) ) C_ ( { 1o } X. A ) -> ( x i^i ( { 1o } X. A ) ) ~<_ ( { 1o } X. A ) ) ) |
|
| 44 | 41 42 43 | mpisyl | |- ( A e. _V -> ( x i^i ( { 1o } X. A ) ) ~<_ ( { 1o } X. A ) ) |
| 45 | 1on | |- 1o e. On |
|
| 46 | xpsnen2g | |- ( ( 1o e. On /\ A e. _V ) -> ( { 1o } X. A ) ~~ A ) |
|
| 47 | 45 46 | mpan | |- ( A e. _V -> ( { 1o } X. A ) ~~ A ) |
| 48 | domentr | |- ( ( ( x i^i ( { 1o } X. A ) ) ~<_ ( { 1o } X. A ) /\ ( { 1o } X. A ) ~~ A ) -> ( x i^i ( { 1o } X. A ) ) ~<_ A ) |
|
| 49 | 44 47 48 | syl2anc | |- ( A e. _V -> ( x i^i ( { 1o } X. A ) ) ~<_ A ) |
| 50 | domen1 | |- ( ( x i^i ( { 1o } X. A ) ) ~~ _om -> ( ( x i^i ( { 1o } X. A ) ) ~<_ A <-> _om ~<_ A ) ) |
|
| 51 | 49 50 | syl5ibcom | |- ( A e. _V -> ( ( x i^i ( { 1o } X. A ) ) ~~ _om -> _om ~<_ A ) ) |
| 52 | 38 51 | jaod | |- ( A e. _V -> ( ( ( x i^i ( { (/) } X. A ) ) ~~ _om \/ ( x i^i ( { 1o } X. A ) ) ~~ _om ) -> _om ~<_ A ) ) |
| 53 | 25 52 | syl5 | |- ( A e. _V -> ( ( ( x i^i ( { (/) } X. A ) ) u. ( x i^i ( { 1o } X. A ) ) ) ~~ _om -> _om ~<_ A ) ) |
| 54 | 24 53 | syl5 | |- ( A e. _V -> ( ( _om ~~ x /\ x C_ ( A |_| A ) ) -> _om ~<_ A ) ) |
| 55 | 54 | exlimdv | |- ( A e. _V -> ( E. x ( _om ~~ x /\ x C_ ( A |_| A ) ) -> _om ~<_ A ) ) |
| 56 | 11 14 55 | sylc | |- ( _om ~<_ ( A |_| A ) -> _om ~<_ A ) |
| 57 | 6 56 | impbii | |- ( _om ~<_ A <-> _om ~<_ ( A |_| A ) ) |