This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The disjoint union of two classes is a set iff both classes are sets. (Contributed by Jim Kingdon, 6-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djuexb | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ↔ ( 𝐴 ⊔ 𝐵 ) ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djuex | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ⊔ 𝐵 ) ∈ V ) | |
| 2 | df-dju | ⊢ ( 𝐴 ⊔ 𝐵 ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) | |
| 3 | 2 | eleq1i | ⊢ ( ( 𝐴 ⊔ 𝐵 ) ∈ V ↔ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ∈ V ) |
| 4 | unexb | ⊢ ( ( ( { ∅ } × 𝐴 ) ∈ V ∧ ( { 1o } × 𝐵 ) ∈ V ) ↔ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ∈ V ) | |
| 5 | 3 4 | bitr4i | ⊢ ( ( 𝐴 ⊔ 𝐵 ) ∈ V ↔ ( ( { ∅ } × 𝐴 ) ∈ V ∧ ( { 1o } × 𝐵 ) ∈ V ) ) |
| 6 | 0nep0 | ⊢ ∅ ≠ { ∅ } | |
| 7 | 6 | necomi | ⊢ { ∅ } ≠ ∅ |
| 8 | rnexg | ⊢ ( ( { ∅ } × 𝐴 ) ∈ V → ran ( { ∅ } × 𝐴 ) ∈ V ) | |
| 9 | rnxp | ⊢ ( { ∅ } ≠ ∅ → ran ( { ∅ } × 𝐴 ) = 𝐴 ) | |
| 10 | 9 | eleq1d | ⊢ ( { ∅ } ≠ ∅ → ( ran ( { ∅ } × 𝐴 ) ∈ V ↔ 𝐴 ∈ V ) ) |
| 11 | 8 10 | imbitrid | ⊢ ( { ∅ } ≠ ∅ → ( ( { ∅ } × 𝐴 ) ∈ V → 𝐴 ∈ V ) ) |
| 12 | 7 11 | ax-mp | ⊢ ( ( { ∅ } × 𝐴 ) ∈ V → 𝐴 ∈ V ) |
| 13 | 1oex | ⊢ 1o ∈ V | |
| 14 | 13 | snnz | ⊢ { 1o } ≠ ∅ |
| 15 | rnexg | ⊢ ( ( { 1o } × 𝐵 ) ∈ V → ran ( { 1o } × 𝐵 ) ∈ V ) | |
| 16 | rnxp | ⊢ ( { 1o } ≠ ∅ → ran ( { 1o } × 𝐵 ) = 𝐵 ) | |
| 17 | 16 | eleq1d | ⊢ ( { 1o } ≠ ∅ → ( ran ( { 1o } × 𝐵 ) ∈ V ↔ 𝐵 ∈ V ) ) |
| 18 | 15 17 | imbitrid | ⊢ ( { 1o } ≠ ∅ → ( ( { 1o } × 𝐵 ) ∈ V → 𝐵 ∈ V ) ) |
| 19 | 14 18 | ax-mp | ⊢ ( ( { 1o } × 𝐵 ) ∈ V → 𝐵 ∈ V ) |
| 20 | 12 19 | anim12i | ⊢ ( ( ( { ∅ } × 𝐴 ) ∈ V ∧ ( { 1o } × 𝐵 ) ∈ V ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
| 21 | 5 20 | sylbi | ⊢ ( ( 𝐴 ⊔ 𝐵 ) ∈ V → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
| 22 | 1 21 | impbii | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ↔ ( 𝐴 ⊔ 𝐵 ) ∈ V ) |