This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Calculate the reduced form of a quotient using gcd . (Contributed by Stefan O'Rear, 13-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divnumden | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( ( numer ‘ ( 𝐴 / 𝐵 ) ) = ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∧ ( denom ‘ ( 𝐴 / 𝐵 ) ) = ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → 𝐴 ∈ ℤ ) | |
| 2 | nnz | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℤ ) |
| 4 | nnne0 | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ≠ 0 ) | |
| 5 | 4 | neneqd | ⊢ ( 𝐵 ∈ ℕ → ¬ 𝐵 = 0 ) |
| 6 | 5 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ¬ 𝐵 = 0 ) |
| 7 | 6 | intnand | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) |
| 8 | gcdn0cl | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) | |
| 9 | 1 3 7 8 | syl21anc | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
| 10 | gcddvds | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) | |
| 11 | 2 10 | sylan2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
| 12 | gcddiv | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐴 gcd 𝐵 ) ∈ ℕ ) ∧ ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) → ( ( 𝐴 gcd 𝐵 ) / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) | |
| 13 | 1 3 9 11 12 | syl31anc | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) |
| 14 | 9 | nncnd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
| 15 | 9 | nnne0d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ≠ 0 ) |
| 16 | 14 15 | dividd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) / ( 𝐴 gcd 𝐵 ) ) = 1 ) |
| 17 | 13 16 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) |
| 18 | zcn | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) | |
| 19 | 18 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
| 20 | nncn | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ ) | |
| 21 | 20 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℂ ) |
| 22 | 4 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → 𝐵 ≠ 0 ) |
| 23 | divcan7 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( ( 𝐴 gcd 𝐵 ) ∈ ℂ ∧ ( 𝐴 gcd 𝐵 ) ≠ 0 ) ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) / ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = ( 𝐴 / 𝐵 ) ) | |
| 24 | 23 | eqcomd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( ( 𝐴 gcd 𝐵 ) ∈ ℂ ∧ ( 𝐴 gcd 𝐵 ) ≠ 0 ) ) → ( 𝐴 / 𝐵 ) = ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) / ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) |
| 25 | 19 21 22 14 15 24 | syl122anc | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / 𝐵 ) = ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) / ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) |
| 26 | znq | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / 𝐵 ) ∈ ℚ ) | |
| 27 | 11 | simpld | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ) |
| 28 | gcdcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) | |
| 29 | 28 | nn0zd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
| 30 | 2 29 | sylan2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
| 31 | dvdsval2 | ⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ ( 𝐴 gcd 𝐵 ) ≠ 0 ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ↔ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) ) | |
| 32 | 30 15 1 31 | syl3anc | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ↔ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) ) |
| 33 | 27 32 | mpbid | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) |
| 34 | 11 | simprd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) |
| 35 | simpr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℕ ) | |
| 36 | nndivdvds | ⊢ ( ( 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ↔ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) ) | |
| 37 | 35 9 36 | syl2anc | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ↔ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) ) |
| 38 | 34 37 | mpbid | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) |
| 39 | qnumdenbi | ⊢ ( ( ( 𝐴 / 𝐵 ) ∈ ℚ ∧ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) → ( ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ∧ ( 𝐴 / 𝐵 ) = ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) / ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) ↔ ( ( numer ‘ ( 𝐴 / 𝐵 ) ) = ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∧ ( denom ‘ ( 𝐴 / 𝐵 ) ) = ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) ) | |
| 40 | 26 33 38 39 | syl3anc | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ∧ ( 𝐴 / 𝐵 ) = ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) / ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) ↔ ( ( numer ‘ ( 𝐴 / 𝐵 ) ) = ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∧ ( denom ‘ ( 𝐴 / 𝐵 ) ) = ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) ) |
| 41 | 17 25 40 | mpbi2and | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( ( numer ‘ ( 𝐴 / 𝐵 ) ) = ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∧ ( denom ‘ ( 𝐴 / 𝐵 ) ) = ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) |