This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reducing a quotient never increases the denominator. (Contributed by Stefan O'Rear, 13-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divdenle | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( denom ‘ ( 𝐴 / 𝐵 ) ) ≤ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divnumden | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( ( numer ‘ ( 𝐴 / 𝐵 ) ) = ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∧ ( denom ‘ ( 𝐴 / 𝐵 ) ) = ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) | |
| 2 | 1 | simprd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( denom ‘ ( 𝐴 / 𝐵 ) ) = ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) |
| 3 | simpl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → 𝐴 ∈ ℤ ) | |
| 4 | nnz | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℤ ) |
| 6 | nnne0 | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ≠ 0 ) | |
| 7 | 6 | neneqd | ⊢ ( 𝐵 ∈ ℕ → ¬ 𝐵 = 0 ) |
| 8 | 7 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ¬ 𝐵 = 0 ) |
| 9 | 8 | intnand | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) |
| 10 | gcdn0cl | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) | |
| 11 | 3 5 9 10 | syl21anc | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
| 12 | 11 | nnge1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → 1 ≤ ( 𝐴 gcd 𝐵 ) ) |
| 13 | 1red | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → 1 ∈ ℝ ) | |
| 14 | 0lt1 | ⊢ 0 < 1 | |
| 15 | 14 | a1i | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → 0 < 1 ) |
| 16 | 11 | nnred | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℝ ) |
| 17 | 11 | nngt0d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → 0 < ( 𝐴 gcd 𝐵 ) ) |
| 18 | nnre | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ ) | |
| 19 | 18 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℝ ) |
| 20 | nngt0 | ⊢ ( 𝐵 ∈ ℕ → 0 < 𝐵 ) | |
| 21 | 20 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → 0 < 𝐵 ) |
| 22 | lediv2 | ⊢ ( ( ( 1 ∈ ℝ ∧ 0 < 1 ) ∧ ( ( 𝐴 gcd 𝐵 ) ∈ ℝ ∧ 0 < ( 𝐴 gcd 𝐵 ) ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 1 ≤ ( 𝐴 gcd 𝐵 ) ↔ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ≤ ( 𝐵 / 1 ) ) ) | |
| 23 | 13 15 16 17 19 21 22 | syl222anc | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 1 ≤ ( 𝐴 gcd 𝐵 ) ↔ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ≤ ( 𝐵 / 1 ) ) ) |
| 24 | 12 23 | mpbid | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ≤ ( 𝐵 / 1 ) ) |
| 25 | nncn | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ ) | |
| 26 | 25 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℂ ) |
| 27 | 26 | div1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐵 / 1 ) = 𝐵 ) |
| 28 | 24 27 | breqtrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ≤ 𝐵 ) |
| 29 | 2 28 | eqbrtrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( denom ‘ ( 𝐴 / 𝐵 ) ) ≤ 𝐵 ) |