This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Calculate the reduced form of a quotient using gcd . (Contributed by Stefan O'Rear, 13-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divnumden | |- ( ( A e. ZZ /\ B e. NN ) -> ( ( numer ` ( A / B ) ) = ( A / ( A gcd B ) ) /\ ( denom ` ( A / B ) ) = ( B / ( A gcd B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( A e. ZZ /\ B e. NN ) -> A e. ZZ ) |
|
| 2 | nnz | |- ( B e. NN -> B e. ZZ ) |
|
| 3 | 2 | adantl | |- ( ( A e. ZZ /\ B e. NN ) -> B e. ZZ ) |
| 4 | nnne0 | |- ( B e. NN -> B =/= 0 ) |
|
| 5 | 4 | neneqd | |- ( B e. NN -> -. B = 0 ) |
| 6 | 5 | adantl | |- ( ( A e. ZZ /\ B e. NN ) -> -. B = 0 ) |
| 7 | 6 | intnand | |- ( ( A e. ZZ /\ B e. NN ) -> -. ( A = 0 /\ B = 0 ) ) |
| 8 | gcdn0cl | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( A gcd B ) e. NN ) |
|
| 9 | 1 3 7 8 | syl21anc | |- ( ( A e. ZZ /\ B e. NN ) -> ( A gcd B ) e. NN ) |
| 10 | gcddvds | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
|
| 11 | 2 10 | sylan2 | |- ( ( A e. ZZ /\ B e. NN ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
| 12 | gcddiv | |- ( ( ( A e. ZZ /\ B e. ZZ /\ ( A gcd B ) e. NN ) /\ ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) -> ( ( A gcd B ) / ( A gcd B ) ) = ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) ) |
|
| 13 | 1 3 9 11 12 | syl31anc | |- ( ( A e. ZZ /\ B e. NN ) -> ( ( A gcd B ) / ( A gcd B ) ) = ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) ) |
| 14 | 9 | nncnd | |- ( ( A e. ZZ /\ B e. NN ) -> ( A gcd B ) e. CC ) |
| 15 | 9 | nnne0d | |- ( ( A e. ZZ /\ B e. NN ) -> ( A gcd B ) =/= 0 ) |
| 16 | 14 15 | dividd | |- ( ( A e. ZZ /\ B e. NN ) -> ( ( A gcd B ) / ( A gcd B ) ) = 1 ) |
| 17 | 13 16 | eqtr3d | |- ( ( A e. ZZ /\ B e. NN ) -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) |
| 18 | zcn | |- ( A e. ZZ -> A e. CC ) |
|
| 19 | 18 | adantr | |- ( ( A e. ZZ /\ B e. NN ) -> A e. CC ) |
| 20 | nncn | |- ( B e. NN -> B e. CC ) |
|
| 21 | 20 | adantl | |- ( ( A e. ZZ /\ B e. NN ) -> B e. CC ) |
| 22 | 4 | adantl | |- ( ( A e. ZZ /\ B e. NN ) -> B =/= 0 ) |
| 23 | divcan7 | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( ( A gcd B ) e. CC /\ ( A gcd B ) =/= 0 ) ) -> ( ( A / ( A gcd B ) ) / ( B / ( A gcd B ) ) ) = ( A / B ) ) |
|
| 24 | 23 | eqcomd | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( ( A gcd B ) e. CC /\ ( A gcd B ) =/= 0 ) ) -> ( A / B ) = ( ( A / ( A gcd B ) ) / ( B / ( A gcd B ) ) ) ) |
| 25 | 19 21 22 14 15 24 | syl122anc | |- ( ( A e. ZZ /\ B e. NN ) -> ( A / B ) = ( ( A / ( A gcd B ) ) / ( B / ( A gcd B ) ) ) ) |
| 26 | znq | |- ( ( A e. ZZ /\ B e. NN ) -> ( A / B ) e. QQ ) |
|
| 27 | 11 | simpld | |- ( ( A e. ZZ /\ B e. NN ) -> ( A gcd B ) || A ) |
| 28 | gcdcl | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) e. NN0 ) |
|
| 29 | 28 | nn0zd | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) e. ZZ ) |
| 30 | 2 29 | sylan2 | |- ( ( A e. ZZ /\ B e. NN ) -> ( A gcd B ) e. ZZ ) |
| 31 | dvdsval2 | |- ( ( ( A gcd B ) e. ZZ /\ ( A gcd B ) =/= 0 /\ A e. ZZ ) -> ( ( A gcd B ) || A <-> ( A / ( A gcd B ) ) e. ZZ ) ) |
|
| 32 | 30 15 1 31 | syl3anc | |- ( ( A e. ZZ /\ B e. NN ) -> ( ( A gcd B ) || A <-> ( A / ( A gcd B ) ) e. ZZ ) ) |
| 33 | 27 32 | mpbid | |- ( ( A e. ZZ /\ B e. NN ) -> ( A / ( A gcd B ) ) e. ZZ ) |
| 34 | 11 | simprd | |- ( ( A e. ZZ /\ B e. NN ) -> ( A gcd B ) || B ) |
| 35 | simpr | |- ( ( A e. ZZ /\ B e. NN ) -> B e. NN ) |
|
| 36 | nndivdvds | |- ( ( B e. NN /\ ( A gcd B ) e. NN ) -> ( ( A gcd B ) || B <-> ( B / ( A gcd B ) ) e. NN ) ) |
|
| 37 | 35 9 36 | syl2anc | |- ( ( A e. ZZ /\ B e. NN ) -> ( ( A gcd B ) || B <-> ( B / ( A gcd B ) ) e. NN ) ) |
| 38 | 34 37 | mpbid | |- ( ( A e. ZZ /\ B e. NN ) -> ( B / ( A gcd B ) ) e. NN ) |
| 39 | qnumdenbi | |- ( ( ( A / B ) e. QQ /\ ( A / ( A gcd B ) ) e. ZZ /\ ( B / ( A gcd B ) ) e. NN ) -> ( ( ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 /\ ( A / B ) = ( ( A / ( A gcd B ) ) / ( B / ( A gcd B ) ) ) ) <-> ( ( numer ` ( A / B ) ) = ( A / ( A gcd B ) ) /\ ( denom ` ( A / B ) ) = ( B / ( A gcd B ) ) ) ) ) |
|
| 40 | 26 33 38 39 | syl3anc | |- ( ( A e. ZZ /\ B e. NN ) -> ( ( ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 /\ ( A / B ) = ( ( A / ( A gcd B ) ) / ( B / ( A gcd B ) ) ) ) <-> ( ( numer ` ( A / B ) ) = ( A / ( A gcd B ) ) /\ ( denom ` ( A / B ) ) = ( B / ( A gcd B ) ) ) ) ) |
| 41 | 17 25 40 | mpbi2and | |- ( ( A e. ZZ /\ B e. NN ) -> ( ( numer ` ( A / B ) ) = ( A / ( A gcd B ) ) /\ ( denom ` ( A / B ) ) = ( B / ( A gcd B ) ) ) ) |