This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of a ring homomorphism can be decomposed into separate homomorphic conditions for addition and multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfrhm2 | ⊢ RingHom = ( 𝑟 ∈ Ring , 𝑠 ∈ Ring ↦ ( ( 𝑟 GrpHom 𝑠 ) ∩ ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rhm | ⊢ RingHom = ( 𝑟 ∈ Ring , 𝑠 ∈ Ring ↦ ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) } ) | |
| 2 | ancom | ⊢ ( ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ) | |
| 3 | r19.26-2 | ⊢ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) | |
| 4 | 3 | anbi1i | ⊢ ( ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ↔ ( ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ) |
| 5 | anass | ⊢ ( ( ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ↔ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ) ) | |
| 6 | 2 4 5 | 3bitri | ⊢ ( ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ) ) |
| 7 | 6 | rabbii | ⊢ { 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∣ ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) } = { 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∣ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ) } |
| 8 | fvex | ⊢ ( Base ‘ 𝑟 ) ∈ V | |
| 9 | fvex | ⊢ ( Base ‘ 𝑠 ) ∈ V | |
| 10 | oveq12 | ⊢ ( ( 𝑤 = ( Base ‘ 𝑠 ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑤 ↑m 𝑣 ) = ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ) | |
| 11 | 10 | ancoms | ⊢ ( ( 𝑣 = ( Base ‘ 𝑟 ) ∧ 𝑤 = ( Base ‘ 𝑠 ) ) → ( 𝑤 ↑m 𝑣 ) = ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ) |
| 12 | raleq | ⊢ ( 𝑣 = ( Base ‘ 𝑟 ) → ( ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) | |
| 13 | 12 | raleqbi1dv | ⊢ ( 𝑣 = ( Base ‘ 𝑟 ) → ( ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝑣 = ( Base ‘ 𝑟 ) ∧ 𝑤 = ( Base ‘ 𝑠 ) ) → ( ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
| 15 | 14 | anbi2d | ⊢ ( ( 𝑣 = ( Base ‘ 𝑟 ) ∧ 𝑤 = ( Base ‘ 𝑠 ) ) → ( ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ↔ ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) |
| 16 | 11 15 | rabeqbidv | ⊢ ( ( 𝑣 = ( Base ‘ 𝑟 ) ∧ 𝑤 = ( Base ‘ 𝑠 ) ) → { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) } = { 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∣ ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) } ) |
| 17 | 8 9 16 | csbie2 | ⊢ ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) } = { 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∣ ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) } |
| 18 | inrab | ⊢ ( { 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) } ∩ { 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∣ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) } ) = { 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∣ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ) } | |
| 19 | 7 17 18 | 3eqtr4i | ⊢ ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) } = ( { 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) } ∩ { 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∣ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) } ) |
| 20 | ringgrp | ⊢ ( 𝑟 ∈ Ring → 𝑟 ∈ Grp ) | |
| 21 | ringgrp | ⊢ ( 𝑠 ∈ Ring → 𝑠 ∈ Grp ) | |
| 22 | eqid | ⊢ ( Base ‘ 𝑟 ) = ( Base ‘ 𝑟 ) | |
| 23 | eqid | ⊢ ( Base ‘ 𝑠 ) = ( Base ‘ 𝑠 ) | |
| 24 | eqid | ⊢ ( +g ‘ 𝑟 ) = ( +g ‘ 𝑟 ) | |
| 25 | eqid | ⊢ ( +g ‘ 𝑠 ) = ( +g ‘ 𝑠 ) | |
| 26 | 22 23 24 25 | isghm3 | ⊢ ( ( 𝑟 ∈ Grp ∧ 𝑠 ∈ Grp ) → ( 𝑓 ∈ ( 𝑟 GrpHom 𝑠 ) ↔ ( 𝑓 : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
| 27 | 20 21 26 | syl2an | ⊢ ( ( 𝑟 ∈ Ring ∧ 𝑠 ∈ Ring ) → ( 𝑓 ∈ ( 𝑟 GrpHom 𝑠 ) ↔ ( 𝑓 : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
| 28 | 27 | eqabdv | ⊢ ( ( 𝑟 ∈ Ring ∧ 𝑠 ∈ Ring ) → ( 𝑟 GrpHom 𝑠 ) = { 𝑓 ∣ ( 𝑓 : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) |
| 29 | df-rab | ⊢ { 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) } = { 𝑓 ∣ ( 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } | |
| 30 | 9 8 | elmap | ⊢ ( 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ↔ 𝑓 : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑠 ) ) |
| 31 | 30 | anbi1i | ⊢ ( ( 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( 𝑓 : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 32 | 31 | abbii | ⊢ { 𝑓 ∣ ( 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } = { 𝑓 ∣ ( 𝑓 : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } |
| 33 | 29 32 | eqtri | ⊢ { 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) } = { 𝑓 ∣ ( 𝑓 : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } |
| 34 | 28 33 | eqtr4di | ⊢ ( ( 𝑟 ∈ Ring ∧ 𝑠 ∈ Ring ) → ( 𝑟 GrpHom 𝑠 ) = { 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) } ) |
| 35 | eqid | ⊢ ( mulGrp ‘ 𝑟 ) = ( mulGrp ‘ 𝑟 ) | |
| 36 | 35 | ringmgp | ⊢ ( 𝑟 ∈ Ring → ( mulGrp ‘ 𝑟 ) ∈ Mnd ) |
| 37 | eqid | ⊢ ( mulGrp ‘ 𝑠 ) = ( mulGrp ‘ 𝑠 ) | |
| 38 | 37 | ringmgp | ⊢ ( 𝑠 ∈ Ring → ( mulGrp ‘ 𝑠 ) ∈ Mnd ) |
| 39 | 35 22 | mgpbas | ⊢ ( Base ‘ 𝑟 ) = ( Base ‘ ( mulGrp ‘ 𝑟 ) ) |
| 40 | 37 23 | mgpbas | ⊢ ( Base ‘ 𝑠 ) = ( Base ‘ ( mulGrp ‘ 𝑠 ) ) |
| 41 | eqid | ⊢ ( .r ‘ 𝑟 ) = ( .r ‘ 𝑟 ) | |
| 42 | 35 41 | mgpplusg | ⊢ ( .r ‘ 𝑟 ) = ( +g ‘ ( mulGrp ‘ 𝑟 ) ) |
| 43 | eqid | ⊢ ( .r ‘ 𝑠 ) = ( .r ‘ 𝑠 ) | |
| 44 | 37 43 | mgpplusg | ⊢ ( .r ‘ 𝑠 ) = ( +g ‘ ( mulGrp ‘ 𝑠 ) ) |
| 45 | eqid | ⊢ ( 1r ‘ 𝑟 ) = ( 1r ‘ 𝑟 ) | |
| 46 | 35 45 | ringidval | ⊢ ( 1r ‘ 𝑟 ) = ( 0g ‘ ( mulGrp ‘ 𝑟 ) ) |
| 47 | eqid | ⊢ ( 1r ‘ 𝑠 ) = ( 1r ‘ 𝑠 ) | |
| 48 | 37 47 | ringidval | ⊢ ( 1r ‘ 𝑠 ) = ( 0g ‘ ( mulGrp ‘ 𝑠 ) ) |
| 49 | 39 40 42 44 46 48 | ismhm | ⊢ ( 𝑓 ∈ ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) ↔ ( ( ( mulGrp ‘ 𝑟 ) ∈ Mnd ∧ ( mulGrp ‘ 𝑠 ) ∈ Mnd ) ∧ ( 𝑓 : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ) ) |
| 50 | 49 | baib | ⊢ ( ( ( mulGrp ‘ 𝑟 ) ∈ Mnd ∧ ( mulGrp ‘ 𝑠 ) ∈ Mnd ) → ( 𝑓 ∈ ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) ↔ ( 𝑓 : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ) ) |
| 51 | 36 38 50 | syl2an | ⊢ ( ( 𝑟 ∈ Ring ∧ 𝑠 ∈ Ring ) → ( 𝑓 ∈ ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) ↔ ( 𝑓 : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ) ) |
| 52 | 51 | eqabdv | ⊢ ( ( 𝑟 ∈ Ring ∧ 𝑠 ∈ Ring ) → ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) = { 𝑓 ∣ ( 𝑓 : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) } ) |
| 53 | df-rab | ⊢ { 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∣ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) } = { 𝑓 ∣ ( 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∧ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ) } | |
| 54 | 30 | anbi1i | ⊢ ( ( 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∧ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ) ↔ ( 𝑓 : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑠 ) ∧ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ) ) |
| 55 | 3anass | ⊢ ( ( 𝑓 : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ↔ ( 𝑓 : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑠 ) ∧ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ) ) | |
| 56 | 54 55 | bitr4i | ⊢ ( ( 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∧ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ) ↔ ( 𝑓 : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ) |
| 57 | 56 | abbii | ⊢ { 𝑓 ∣ ( 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∧ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) ) } = { 𝑓 ∣ ( 𝑓 : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) } |
| 58 | 53 57 | eqtri | ⊢ { 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∣ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) } = { 𝑓 ∣ ( 𝑓 : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) } |
| 59 | 52 58 | eqtr4di | ⊢ ( ( 𝑟 ∈ Ring ∧ 𝑠 ∈ Ring ) → ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) = { 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∣ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) } ) |
| 60 | 34 59 | ineq12d | ⊢ ( ( 𝑟 ∈ Ring ∧ 𝑠 ∈ Ring ) → ( ( 𝑟 GrpHom 𝑠 ) ∩ ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) ) = ( { 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) } ∩ { 𝑓 ∈ ( ( Base ‘ 𝑠 ) ↑m ( Base ‘ 𝑟 ) ) ∣ ( ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ) } ) ) |
| 61 | 19 60 | eqtr4id | ⊢ ( ( 𝑟 ∈ Ring ∧ 𝑠 ∈ Ring ) → ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) } = ( ( 𝑟 GrpHom 𝑠 ) ∩ ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) ) ) |
| 62 | 61 | mpoeq3ia | ⊢ ( 𝑟 ∈ Ring , 𝑠 ∈ Ring ↦ ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) } ) = ( 𝑟 ∈ Ring , 𝑠 ∈ Ring ↦ ( ( 𝑟 GrpHom 𝑠 ) ∩ ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) ) ) |
| 63 | 1 62 | eqtri | ⊢ RingHom = ( 𝑟 ∈ Ring , 𝑠 ∈ Ring ↦ ( ( 𝑟 GrpHom 𝑠 ) ∩ ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) ) ) |