This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of ring homomorphisms from r to s . (Contributed by Stefan O'Rear, 7-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-rhm | ⊢ RingHom = ( 𝑟 ∈ Ring , 𝑠 ∈ Ring ↦ ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | crh | ⊢ RingHom | |
| 1 | vr | ⊢ 𝑟 | |
| 2 | crg | ⊢ Ring | |
| 3 | vs | ⊢ 𝑠 | |
| 4 | cbs | ⊢ Base | |
| 5 | 1 | cv | ⊢ 𝑟 |
| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑟 ) |
| 7 | vv | ⊢ 𝑣 | |
| 8 | 3 | cv | ⊢ 𝑠 |
| 9 | 8 4 | cfv | ⊢ ( Base ‘ 𝑠 ) |
| 10 | vw | ⊢ 𝑤 | |
| 11 | vf | ⊢ 𝑓 | |
| 12 | 10 | cv | ⊢ 𝑤 |
| 13 | cmap | ⊢ ↑m | |
| 14 | 7 | cv | ⊢ 𝑣 |
| 15 | 12 14 13 | co | ⊢ ( 𝑤 ↑m 𝑣 ) |
| 16 | 11 | cv | ⊢ 𝑓 |
| 17 | cur | ⊢ 1r | |
| 18 | 5 17 | cfv | ⊢ ( 1r ‘ 𝑟 ) |
| 19 | 18 16 | cfv | ⊢ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) |
| 20 | 8 17 | cfv | ⊢ ( 1r ‘ 𝑠 ) |
| 21 | 19 20 | wceq | ⊢ ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) |
| 22 | vx | ⊢ 𝑥 | |
| 23 | vy | ⊢ 𝑦 | |
| 24 | 22 | cv | ⊢ 𝑥 |
| 25 | cplusg | ⊢ +g | |
| 26 | 5 25 | cfv | ⊢ ( +g ‘ 𝑟 ) |
| 27 | 23 | cv | ⊢ 𝑦 |
| 28 | 24 27 26 | co | ⊢ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) |
| 29 | 28 16 | cfv | ⊢ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) |
| 30 | 24 16 | cfv | ⊢ ( 𝑓 ‘ 𝑥 ) |
| 31 | 8 25 | cfv | ⊢ ( +g ‘ 𝑠 ) |
| 32 | 27 16 | cfv | ⊢ ( 𝑓 ‘ 𝑦 ) |
| 33 | 30 32 31 | co | ⊢ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) |
| 34 | 29 33 | wceq | ⊢ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) |
| 35 | cmulr | ⊢ .r | |
| 36 | 5 35 | cfv | ⊢ ( .r ‘ 𝑟 ) |
| 37 | 24 27 36 | co | ⊢ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) |
| 38 | 37 16 | cfv | ⊢ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) |
| 39 | 8 35 | cfv | ⊢ ( .r ‘ 𝑠 ) |
| 40 | 30 32 39 | co | ⊢ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) |
| 41 | 38 40 | wceq | ⊢ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) |
| 42 | 34 41 | wa | ⊢ ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) |
| 43 | 42 23 14 | wral | ⊢ ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) |
| 44 | 43 22 14 | wral | ⊢ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) |
| 45 | 21 44 | wa | ⊢ ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 46 | 45 11 15 | crab | ⊢ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) } |
| 47 | 10 9 46 | csb | ⊢ ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) } |
| 48 | 7 6 47 | csb | ⊢ ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) } |
| 49 | 1 3 2 2 48 | cmpo | ⊢ ( 𝑟 ∈ Ring , 𝑠 ∈ Ring ↦ ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) } ) |
| 50 | 0 49 | wceq | ⊢ RingHom = ( 𝑟 ∈ Ring , 𝑠 ∈ Ring ↦ ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ( ( 𝑓 ‘ ( 1r ‘ 𝑟 ) ) = ( 1r ‘ 𝑠 ) ∧ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) ) } ) |