This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change the base of a Cauchy criterion. (Contributed by Mario Carneiro, 18-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cau3.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| cau4.2 | ⊢ 𝑊 = ( ℤ≥ ‘ 𝑁 ) | ||
| Assertion | cau4 | ⊢ ( 𝑁 ∈ 𝑍 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑊 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cau3.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | cau4.2 | ⊢ 𝑊 = ( ℤ≥ ‘ 𝑁 ) | |
| 3 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 4 | 1 | rexuz3 | ⊢ ( 𝑀 ∈ ℤ → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ∀ 𝑦 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ∀ 𝑦 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑥 ) ) ) |
| 5 | 3 4 | syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ∀ 𝑦 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ∀ 𝑦 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑥 ) ) ) |
| 6 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 7 | 2 | rexuz3 | ⊢ ( 𝑁 ∈ ℤ → ( ∃ 𝑗 ∈ 𝑊 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ∀ 𝑦 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ∀ 𝑦 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑥 ) ) ) |
| 8 | 6 7 | syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ∃ 𝑗 ∈ 𝑊 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ∀ 𝑦 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ∀ 𝑦 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑥 ) ) ) |
| 9 | 5 8 | bitr4d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ∀ 𝑦 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ 𝑊 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ∀ 𝑦 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑥 ) ) ) |
| 10 | 9 1 | eleq2s | ⊢ ( 𝑁 ∈ 𝑍 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ∀ 𝑦 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ 𝑊 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ∀ 𝑦 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑥 ) ) ) |
| 11 | 10 | ralbidv | ⊢ ( 𝑁 ∈ 𝑍 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ∀ 𝑦 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑊 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ∀ 𝑦 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑥 ) ) ) |
| 12 | 1 | cau3 | ⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ∀ 𝑦 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑥 ) ) |
| 13 | 2 | cau3 | ⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑊 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑊 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ∀ 𝑦 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑥 ) ) |
| 14 | 11 12 13 | 3bitr4g | ⊢ ( 𝑁 ∈ 𝑍 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑊 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |