This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Associative" law for second argument of inner product (compare cphass ). See ipassr , his52 . (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphipcj.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| cphipcj.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| cphass.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| cphass.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| cphass.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| Assertion | cphassr | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐵 , ( 𝐴 · 𝐶 ) ) = ( ( ∗ ‘ 𝐴 ) · ( 𝐵 , 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphipcj.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 2 | cphipcj.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 3 | cphass.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | cphass.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 5 | cphass.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 6 | cphclm | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝑊 ∈ ℂMod ) |
| 8 | 3 | clmmul | ⊢ ( 𝑊 ∈ ℂMod → · = ( .r ‘ 𝐹 ) ) |
| 9 | 7 8 | syl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → · = ( .r ‘ 𝐹 ) ) |
| 10 | eqidd | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐵 , 𝐶 ) = ( 𝐵 , 𝐶 ) ) | |
| 11 | 3 | clmcj | ⊢ ( 𝑊 ∈ ℂMod → ∗ = ( *𝑟 ‘ 𝐹 ) ) |
| 12 | 7 11 | syl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ∗ = ( *𝑟 ‘ 𝐹 ) ) |
| 13 | 12 | fveq1d | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ∗ ‘ 𝐴 ) = ( ( *𝑟 ‘ 𝐹 ) ‘ 𝐴 ) ) |
| 14 | 9 10 13 | oveq123d | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐵 , 𝐶 ) · ( ∗ ‘ 𝐴 ) ) = ( ( 𝐵 , 𝐶 ) ( .r ‘ 𝐹 ) ( ( *𝑟 ‘ 𝐹 ) ‘ 𝐴 ) ) ) |
| 15 | 3 4 | clmsscn | ⊢ ( 𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ ) |
| 16 | 7 15 | syl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐾 ⊆ ℂ ) |
| 17 | simpr1 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐴 ∈ 𝐾 ) | |
| 18 | 16 17 | sseldd | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐴 ∈ ℂ ) |
| 19 | 18 | cjcld | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
| 20 | 2 1 | cphipcl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐵 , 𝐶 ) ∈ ℂ ) |
| 21 | 20 | 3adant3r1 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐵 , 𝐶 ) ∈ ℂ ) |
| 22 | 19 21 | mulcomd | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( ∗ ‘ 𝐴 ) · ( 𝐵 , 𝐶 ) ) = ( ( 𝐵 , 𝐶 ) · ( ∗ ‘ 𝐴 ) ) ) |
| 23 | cphphl | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) | |
| 24 | 3anrot | ⊢ ( ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ↔ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝐾 ) ) | |
| 25 | 24 | biimpi | ⊢ ( ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝐾 ) ) |
| 26 | eqid | ⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) | |
| 27 | eqid | ⊢ ( *𝑟 ‘ 𝐹 ) = ( *𝑟 ‘ 𝐹 ) | |
| 28 | 3 1 2 4 5 26 27 | ipassr | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝐾 ) ) → ( 𝐵 , ( 𝐴 · 𝐶 ) ) = ( ( 𝐵 , 𝐶 ) ( .r ‘ 𝐹 ) ( ( *𝑟 ‘ 𝐹 ) ‘ 𝐴 ) ) ) |
| 29 | 23 25 28 | syl2an | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐵 , ( 𝐴 · 𝐶 ) ) = ( ( 𝐵 , 𝐶 ) ( .r ‘ 𝐹 ) ( ( *𝑟 ‘ 𝐹 ) ‘ 𝐴 ) ) ) |
| 30 | 14 22 29 | 3eqtr4rd | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐵 , ( 𝐴 · 𝐶 ) ) = ( ( ∗ ‘ 𝐴 ) · ( 𝐵 , 𝐶 ) ) ) |