This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move scalar multiplication to outside of inner product. See his35 . (Contributed by Mario Carneiro, 17-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphipcj.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| cphipcj.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| cphass.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| cphass.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| cphass.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| Assertion | cph2ass | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( 𝐴 · 𝐶 ) , ( 𝐵 · 𝐷 ) ) = ( ( 𝐴 · ( ∗ ‘ 𝐵 ) ) · ( 𝐶 , 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphipcj.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 2 | cphipcj.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 3 | cphass.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | cphass.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 5 | cphass.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 6 | simp1 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝑊 ∈ ℂPreHil ) | |
| 7 | simp2r | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝐵 ∈ 𝐾 ) | |
| 8 | simp3l | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝐶 ∈ 𝑉 ) | |
| 9 | simp3r | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝐷 ∈ 𝑉 ) | |
| 10 | 1 2 3 4 5 | cphassr | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( 𝐶 , ( 𝐵 · 𝐷 ) ) = ( ( ∗ ‘ 𝐵 ) · ( 𝐶 , 𝐷 ) ) ) |
| 11 | 6 7 8 9 10 | syl13anc | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( 𝐶 , ( 𝐵 · 𝐷 ) ) = ( ( ∗ ‘ 𝐵 ) · ( 𝐶 , 𝐷 ) ) ) |
| 12 | 11 | oveq2d | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( 𝐴 · ( 𝐶 , ( 𝐵 · 𝐷 ) ) ) = ( 𝐴 · ( ( ∗ ‘ 𝐵 ) · ( 𝐶 , 𝐷 ) ) ) ) |
| 13 | simp2l | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝐴 ∈ 𝐾 ) | |
| 14 | cphlmod | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod ) | |
| 15 | 14 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝑊 ∈ LMod ) |
| 16 | 2 3 5 4 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐾 ∧ 𝐷 ∈ 𝑉 ) → ( 𝐵 · 𝐷 ) ∈ 𝑉 ) |
| 17 | 15 7 9 16 | syl3anc | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( 𝐵 · 𝐷 ) ∈ 𝑉 ) |
| 18 | 1 2 3 4 5 | cphass | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉 ∧ ( 𝐵 · 𝐷 ) ∈ 𝑉 ) ) → ( ( 𝐴 · 𝐶 ) , ( 𝐵 · 𝐷 ) ) = ( 𝐴 · ( 𝐶 , ( 𝐵 · 𝐷 ) ) ) ) |
| 19 | 6 13 8 17 18 | syl13anc | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( 𝐴 · 𝐶 ) , ( 𝐵 · 𝐷 ) ) = ( 𝐴 · ( 𝐶 , ( 𝐵 · 𝐷 ) ) ) ) |
| 20 | cphclm | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod ) | |
| 21 | 20 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝑊 ∈ ℂMod ) |
| 22 | 3 4 | clmsscn | ⊢ ( 𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ ) |
| 23 | 21 22 | syl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝐾 ⊆ ℂ ) |
| 24 | 23 13 | sseldd | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝐴 ∈ ℂ ) |
| 25 | 23 7 | sseldd | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝐵 ∈ ℂ ) |
| 26 | 25 | cjcld | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ∗ ‘ 𝐵 ) ∈ ℂ ) |
| 27 | 2 1 | cphipcl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) → ( 𝐶 , 𝐷 ) ∈ ℂ ) |
| 28 | 27 | 3expb | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( 𝐶 , 𝐷 ) ∈ ℂ ) |
| 29 | 28 | 3adant2 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( 𝐶 , 𝐷 ) ∈ ℂ ) |
| 30 | 24 26 29 | mulassd | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( 𝐴 · ( ∗ ‘ 𝐵 ) ) · ( 𝐶 , 𝐷 ) ) = ( 𝐴 · ( ( ∗ ‘ 𝐵 ) · ( 𝐶 , 𝐷 ) ) ) ) |
| 31 | 12 19 30 | 3eqtr4d | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( 𝐴 · 𝐶 ) , ( 𝐵 · 𝐷 ) ) = ( ( 𝐴 · ( ∗ ‘ 𝐵 ) ) · ( 𝐶 , 𝐷 ) ) ) |