This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Associative" law for second argument of inner product (compare cphass ). See ipassr , his52 . (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphipcj.h | |- ., = ( .i ` W ) |
|
| cphipcj.v | |- V = ( Base ` W ) |
||
| cphass.f | |- F = ( Scalar ` W ) |
||
| cphass.k | |- K = ( Base ` F ) |
||
| cphass.s | |- .x. = ( .s ` W ) |
||
| Assertion | cphassr | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( B ., ( A .x. C ) ) = ( ( * ` A ) x. ( B ., C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphipcj.h | |- ., = ( .i ` W ) |
|
| 2 | cphipcj.v | |- V = ( Base ` W ) |
|
| 3 | cphass.f | |- F = ( Scalar ` W ) |
|
| 4 | cphass.k | |- K = ( Base ` F ) |
|
| 5 | cphass.s | |- .x. = ( .s ` W ) |
|
| 6 | cphclm | |- ( W e. CPreHil -> W e. CMod ) |
|
| 7 | 6 | adantr | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> W e. CMod ) |
| 8 | 3 | clmmul | |- ( W e. CMod -> x. = ( .r ` F ) ) |
| 9 | 7 8 | syl | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> x. = ( .r ` F ) ) |
| 10 | eqidd | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( B ., C ) = ( B ., C ) ) |
|
| 11 | 3 | clmcj | |- ( W e. CMod -> * = ( *r ` F ) ) |
| 12 | 7 11 | syl | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> * = ( *r ` F ) ) |
| 13 | 12 | fveq1d | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( * ` A ) = ( ( *r ` F ) ` A ) ) |
| 14 | 9 10 13 | oveq123d | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( ( B ., C ) x. ( * ` A ) ) = ( ( B ., C ) ( .r ` F ) ( ( *r ` F ) ` A ) ) ) |
| 15 | 3 4 | clmsscn | |- ( W e. CMod -> K C_ CC ) |
| 16 | 7 15 | syl | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> K C_ CC ) |
| 17 | simpr1 | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> A e. K ) |
|
| 18 | 16 17 | sseldd | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> A e. CC ) |
| 19 | 18 | cjcld | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( * ` A ) e. CC ) |
| 20 | 2 1 | cphipcl | |- ( ( W e. CPreHil /\ B e. V /\ C e. V ) -> ( B ., C ) e. CC ) |
| 21 | 20 | 3adant3r1 | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( B ., C ) e. CC ) |
| 22 | 19 21 | mulcomd | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( ( * ` A ) x. ( B ., C ) ) = ( ( B ., C ) x. ( * ` A ) ) ) |
| 23 | cphphl | |- ( W e. CPreHil -> W e. PreHil ) |
|
| 24 | 3anrot | |- ( ( A e. K /\ B e. V /\ C e. V ) <-> ( B e. V /\ C e. V /\ A e. K ) ) |
|
| 25 | 24 | biimpi | |- ( ( A e. K /\ B e. V /\ C e. V ) -> ( B e. V /\ C e. V /\ A e. K ) ) |
| 26 | eqid | |- ( .r ` F ) = ( .r ` F ) |
|
| 27 | eqid | |- ( *r ` F ) = ( *r ` F ) |
|
| 28 | 3 1 2 4 5 26 27 | ipassr | |- ( ( W e. PreHil /\ ( B e. V /\ C e. V /\ A e. K ) ) -> ( B ., ( A .x. C ) ) = ( ( B ., C ) ( .r ` F ) ( ( *r ` F ) ` A ) ) ) |
| 29 | 23 25 28 | syl2an | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( B ., ( A .x. C ) ) = ( ( B ., C ) ( .r ` F ) ( ( *r ` F ) ` A ) ) ) |
| 30 | 14 22 29 | 3eqtr4rd | |- ( ( W e. CPreHil /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( B ., ( A .x. C ) ) = ( ( * ` A ) x. ( B ., C ) ) ) |