This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for inner product. Equation I2 of Ponnusamy p. 363. See ipass , his5 . (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphipcj.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| cphipcj.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| cphass.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| cphass.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| cphass.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| Assertion | cphass | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 · 𝐵 ) , 𝐶 ) = ( 𝐴 · ( 𝐵 , 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphipcj.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 2 | cphipcj.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 3 | cphass.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | cphass.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 5 | cphass.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 6 | cphphl | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) | |
| 7 | eqid | ⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) | |
| 8 | 3 1 2 4 5 7 | ipass | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 · 𝐵 ) , 𝐶 ) = ( 𝐴 ( .r ‘ 𝐹 ) ( 𝐵 , 𝐶 ) ) ) |
| 9 | 6 8 | sylan | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 · 𝐵 ) , 𝐶 ) = ( 𝐴 ( .r ‘ 𝐹 ) ( 𝐵 , 𝐶 ) ) ) |
| 10 | cphclm | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod ) | |
| 11 | 3 | clmmul | ⊢ ( 𝑊 ∈ ℂMod → · = ( .r ‘ 𝐹 ) ) |
| 12 | 10 11 | syl | ⊢ ( 𝑊 ∈ ℂPreHil → · = ( .r ‘ 𝐹 ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → · = ( .r ‘ 𝐹 ) ) |
| 14 | 13 | oveqd | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐴 · ( 𝐵 , 𝐶 ) ) = ( 𝐴 ( .r ‘ 𝐹 ) ( 𝐵 , 𝐶 ) ) ) |
| 15 | 9 14 | eqtr4d | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 · 𝐵 ) , 𝐶 ) = ( 𝐴 · ( 𝐵 , 𝐶 ) ) ) |