This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cosine is between minus one and one on the open interval between zero and _pi . (Contributed by Jim Kingdon, 7-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cos0pilt1 | ⊢ ( 𝐴 ∈ ( 0 (,) π ) → ( cos ‘ 𝐴 ) ∈ ( - 1 (,) 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioore | ⊢ ( 𝐴 ∈ ( 0 (,) π ) → 𝐴 ∈ ℝ ) | |
| 2 | 1 | recoscld | ⊢ ( 𝐴 ∈ ( 0 (,) π ) → ( cos ‘ 𝐴 ) ∈ ℝ ) |
| 3 | cospi | ⊢ ( cos ‘ π ) = - 1 | |
| 4 | ioossicc | ⊢ ( 0 (,) π ) ⊆ ( 0 [,] π ) | |
| 5 | 4 | sseli | ⊢ ( 𝐴 ∈ ( 0 (,) π ) → 𝐴 ∈ ( 0 [,] π ) ) |
| 6 | 0xr | ⊢ 0 ∈ ℝ* | |
| 7 | pire | ⊢ π ∈ ℝ | |
| 8 | 7 | rexri | ⊢ π ∈ ℝ* |
| 9 | 0re | ⊢ 0 ∈ ℝ | |
| 10 | pipos | ⊢ 0 < π | |
| 11 | 9 7 10 | ltleii | ⊢ 0 ≤ π |
| 12 | ubicc2 | ⊢ ( ( 0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 ≤ π ) → π ∈ ( 0 [,] π ) ) | |
| 13 | 6 8 11 12 | mp3an | ⊢ π ∈ ( 0 [,] π ) |
| 14 | 13 | a1i | ⊢ ( 𝐴 ∈ ( 0 (,) π ) → π ∈ ( 0 [,] π ) ) |
| 15 | eliooord | ⊢ ( 𝐴 ∈ ( 0 (,) π ) → ( 0 < 𝐴 ∧ 𝐴 < π ) ) | |
| 16 | 15 | simprd | ⊢ ( 𝐴 ∈ ( 0 (,) π ) → 𝐴 < π ) |
| 17 | 5 14 16 | cosordlem | ⊢ ( 𝐴 ∈ ( 0 (,) π ) → ( cos ‘ π ) < ( cos ‘ 𝐴 ) ) |
| 18 | 3 17 | eqbrtrrid | ⊢ ( 𝐴 ∈ ( 0 (,) π ) → - 1 < ( cos ‘ 𝐴 ) ) |
| 19 | 2re | ⊢ 2 ∈ ℝ | |
| 20 | 19 7 | remulcli | ⊢ ( 2 · π ) ∈ ℝ |
| 21 | 20 | rexri | ⊢ ( 2 · π ) ∈ ℝ* |
| 22 | 1le2 | ⊢ 1 ≤ 2 | |
| 23 | lemulge12 | ⊢ ( ( ( π ∈ ℝ ∧ 2 ∈ ℝ ) ∧ ( 0 ≤ π ∧ 1 ≤ 2 ) ) → π ≤ ( 2 · π ) ) | |
| 24 | 7 19 11 22 23 | mp4an | ⊢ π ≤ ( 2 · π ) |
| 25 | iooss2 | ⊢ ( ( ( 2 · π ) ∈ ℝ* ∧ π ≤ ( 2 · π ) ) → ( 0 (,) π ) ⊆ ( 0 (,) ( 2 · π ) ) ) | |
| 26 | 21 24 25 | mp2an | ⊢ ( 0 (,) π ) ⊆ ( 0 (,) ( 2 · π ) ) |
| 27 | 26 | sseli | ⊢ ( 𝐴 ∈ ( 0 (,) π ) → 𝐴 ∈ ( 0 (,) ( 2 · π ) ) ) |
| 28 | cos02pilt1 | ⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → ( cos ‘ 𝐴 ) < 1 ) | |
| 29 | 27 28 | syl | ⊢ ( 𝐴 ∈ ( 0 (,) π ) → ( cos ‘ 𝐴 ) < 1 ) |
| 30 | neg1rr | ⊢ - 1 ∈ ℝ | |
| 31 | 30 | rexri | ⊢ - 1 ∈ ℝ* |
| 32 | 1re | ⊢ 1 ∈ ℝ | |
| 33 | 32 | rexri | ⊢ 1 ∈ ℝ* |
| 34 | elioo2 | ⊢ ( ( - 1 ∈ ℝ* ∧ 1 ∈ ℝ* ) → ( ( cos ‘ 𝐴 ) ∈ ( - 1 (,) 1 ) ↔ ( ( cos ‘ 𝐴 ) ∈ ℝ ∧ - 1 < ( cos ‘ 𝐴 ) ∧ ( cos ‘ 𝐴 ) < 1 ) ) ) | |
| 35 | 31 33 34 | mp2an | ⊢ ( ( cos ‘ 𝐴 ) ∈ ( - 1 (,) 1 ) ↔ ( ( cos ‘ 𝐴 ) ∈ ℝ ∧ - 1 < ( cos ‘ 𝐴 ) ∧ ( cos ‘ 𝐴 ) < 1 ) ) |
| 36 | 2 18 29 35 | syl3anbrc | ⊢ ( 𝐴 ∈ ( 0 (,) π ) → ( cos ‘ 𝐴 ) ∈ ( - 1 (,) 1 ) ) |