This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cosine is between minus one and one on the open interval between zero and _pi . (Contributed by Jim Kingdon, 7-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cos0pilt1 | |- ( A e. ( 0 (,) _pi ) -> ( cos ` A ) e. ( -u 1 (,) 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioore | |- ( A e. ( 0 (,) _pi ) -> A e. RR ) |
|
| 2 | 1 | recoscld | |- ( A e. ( 0 (,) _pi ) -> ( cos ` A ) e. RR ) |
| 3 | cospi | |- ( cos ` _pi ) = -u 1 |
|
| 4 | ioossicc | |- ( 0 (,) _pi ) C_ ( 0 [,] _pi ) |
|
| 5 | 4 | sseli | |- ( A e. ( 0 (,) _pi ) -> A e. ( 0 [,] _pi ) ) |
| 6 | 0xr | |- 0 e. RR* |
|
| 7 | pire | |- _pi e. RR |
|
| 8 | 7 | rexri | |- _pi e. RR* |
| 9 | 0re | |- 0 e. RR |
|
| 10 | pipos | |- 0 < _pi |
|
| 11 | 9 7 10 | ltleii | |- 0 <_ _pi |
| 12 | ubicc2 | |- ( ( 0 e. RR* /\ _pi e. RR* /\ 0 <_ _pi ) -> _pi e. ( 0 [,] _pi ) ) |
|
| 13 | 6 8 11 12 | mp3an | |- _pi e. ( 0 [,] _pi ) |
| 14 | 13 | a1i | |- ( A e. ( 0 (,) _pi ) -> _pi e. ( 0 [,] _pi ) ) |
| 15 | eliooord | |- ( A e. ( 0 (,) _pi ) -> ( 0 < A /\ A < _pi ) ) |
|
| 16 | 15 | simprd | |- ( A e. ( 0 (,) _pi ) -> A < _pi ) |
| 17 | 5 14 16 | cosordlem | |- ( A e. ( 0 (,) _pi ) -> ( cos ` _pi ) < ( cos ` A ) ) |
| 18 | 3 17 | eqbrtrrid | |- ( A e. ( 0 (,) _pi ) -> -u 1 < ( cos ` A ) ) |
| 19 | 2re | |- 2 e. RR |
|
| 20 | 19 7 | remulcli | |- ( 2 x. _pi ) e. RR |
| 21 | 20 | rexri | |- ( 2 x. _pi ) e. RR* |
| 22 | 1le2 | |- 1 <_ 2 |
|
| 23 | lemulge12 | |- ( ( ( _pi e. RR /\ 2 e. RR ) /\ ( 0 <_ _pi /\ 1 <_ 2 ) ) -> _pi <_ ( 2 x. _pi ) ) |
|
| 24 | 7 19 11 22 23 | mp4an | |- _pi <_ ( 2 x. _pi ) |
| 25 | iooss2 | |- ( ( ( 2 x. _pi ) e. RR* /\ _pi <_ ( 2 x. _pi ) ) -> ( 0 (,) _pi ) C_ ( 0 (,) ( 2 x. _pi ) ) ) |
|
| 26 | 21 24 25 | mp2an | |- ( 0 (,) _pi ) C_ ( 0 (,) ( 2 x. _pi ) ) |
| 27 | 26 | sseli | |- ( A e. ( 0 (,) _pi ) -> A e. ( 0 (,) ( 2 x. _pi ) ) ) |
| 28 | cos02pilt1 | |- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( cos ` A ) < 1 ) |
|
| 29 | 27 28 | syl | |- ( A e. ( 0 (,) _pi ) -> ( cos ` A ) < 1 ) |
| 30 | neg1rr | |- -u 1 e. RR |
|
| 31 | 30 | rexri | |- -u 1 e. RR* |
| 32 | 1re | |- 1 e. RR |
|
| 33 | 32 | rexri | |- 1 e. RR* |
| 34 | elioo2 | |- ( ( -u 1 e. RR* /\ 1 e. RR* ) -> ( ( cos ` A ) e. ( -u 1 (,) 1 ) <-> ( ( cos ` A ) e. RR /\ -u 1 < ( cos ` A ) /\ ( cos ` A ) < 1 ) ) ) |
|
| 35 | 31 33 34 | mp2an | |- ( ( cos ` A ) e. ( -u 1 (,) 1 ) <-> ( ( cos ` A ) e. RR /\ -u 1 < ( cos ` A ) /\ ( cos ` A ) < 1 ) ) |
| 36 | 2 18 29 35 | syl3anbrc | |- ( A e. ( 0 (,) _pi ) -> ( cos ` A ) e. ( -u 1 (,) 1 ) ) |