This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cosord . (Contributed by Mario Carneiro, 10-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cosord.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( 0 [,] π ) ) | |
| cosord.2 | ⊢ ( 𝜑 → 𝐵 ∈ ( 0 [,] π ) ) | ||
| cosord.3 | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | ||
| Assertion | cosordlem | ⊢ ( 𝜑 → ( cos ‘ 𝐵 ) < ( cos ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cosord.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( 0 [,] π ) ) | |
| 2 | cosord.2 | ⊢ ( 𝜑 → 𝐵 ∈ ( 0 [,] π ) ) | |
| 3 | cosord.3 | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | |
| 4 | 0re | ⊢ 0 ∈ ℝ | |
| 5 | pire | ⊢ π ∈ ℝ | |
| 6 | 4 5 | elicc2i | ⊢ ( 𝐵 ∈ ( 0 [,] π ) ↔ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ π ) ) |
| 7 | 2 6 | sylib | ⊢ ( 𝜑 → ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ π ) ) |
| 8 | 7 | simp1d | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 9 | 8 | recnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 10 | 4 5 | elicc2i | ⊢ ( 𝐴 ∈ ( 0 [,] π ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ π ) ) |
| 11 | 1 10 | sylib | ⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ π ) ) |
| 12 | 11 | simp1d | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 13 | 12 | recnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 14 | subcos | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( cos ‘ 𝐴 ) − ( cos ‘ 𝐵 ) ) = ( 2 · ( ( sin ‘ ( ( 𝐵 + 𝐴 ) / 2 ) ) · ( sin ‘ ( ( 𝐵 − 𝐴 ) / 2 ) ) ) ) ) | |
| 15 | 9 13 14 | syl2anc | ⊢ ( 𝜑 → ( ( cos ‘ 𝐴 ) − ( cos ‘ 𝐵 ) ) = ( 2 · ( ( sin ‘ ( ( 𝐵 + 𝐴 ) / 2 ) ) · ( sin ‘ ( ( 𝐵 − 𝐴 ) / 2 ) ) ) ) ) |
| 16 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 17 | 8 12 | readdcld | ⊢ ( 𝜑 → ( 𝐵 + 𝐴 ) ∈ ℝ ) |
| 18 | 17 | rehalfcld | ⊢ ( 𝜑 → ( ( 𝐵 + 𝐴 ) / 2 ) ∈ ℝ ) |
| 19 | 18 | resincld | ⊢ ( 𝜑 → ( sin ‘ ( ( 𝐵 + 𝐴 ) / 2 ) ) ∈ ℝ ) |
| 20 | 4 | a1i | ⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 21 | 11 | simp2d | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
| 22 | 20 12 8 21 3 | lelttrd | ⊢ ( 𝜑 → 0 < 𝐵 ) |
| 23 | 8 12 22 21 | addgtge0d | ⊢ ( 𝜑 → 0 < ( 𝐵 + 𝐴 ) ) |
| 24 | 2re | ⊢ 2 ∈ ℝ | |
| 25 | 2pos | ⊢ 0 < 2 | |
| 26 | divgt0 | ⊢ ( ( ( ( 𝐵 + 𝐴 ) ∈ ℝ ∧ 0 < ( 𝐵 + 𝐴 ) ) ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → 0 < ( ( 𝐵 + 𝐴 ) / 2 ) ) | |
| 27 | 24 25 26 | mpanr12 | ⊢ ( ( ( 𝐵 + 𝐴 ) ∈ ℝ ∧ 0 < ( 𝐵 + 𝐴 ) ) → 0 < ( ( 𝐵 + 𝐴 ) / 2 ) ) |
| 28 | 17 23 27 | syl2anc | ⊢ ( 𝜑 → 0 < ( ( 𝐵 + 𝐴 ) / 2 ) ) |
| 29 | 5 | a1i | ⊢ ( 𝜑 → π ∈ ℝ ) |
| 30 | 12 8 8 3 | ltadd2dd | ⊢ ( 𝜑 → ( 𝐵 + 𝐴 ) < ( 𝐵 + 𝐵 ) ) |
| 31 | 9 | 2timesd | ⊢ ( 𝜑 → ( 2 · 𝐵 ) = ( 𝐵 + 𝐵 ) ) |
| 32 | 30 31 | breqtrrd | ⊢ ( 𝜑 → ( 𝐵 + 𝐴 ) < ( 2 · 𝐵 ) ) |
| 33 | 24 | a1i | ⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 34 | 25 | a1i | ⊢ ( 𝜑 → 0 < 2 ) |
| 35 | ltdivmul | ⊢ ( ( ( 𝐵 + 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( ( 𝐵 + 𝐴 ) / 2 ) < 𝐵 ↔ ( 𝐵 + 𝐴 ) < ( 2 · 𝐵 ) ) ) | |
| 36 | 17 8 33 34 35 | syl112anc | ⊢ ( 𝜑 → ( ( ( 𝐵 + 𝐴 ) / 2 ) < 𝐵 ↔ ( 𝐵 + 𝐴 ) < ( 2 · 𝐵 ) ) ) |
| 37 | 32 36 | mpbird | ⊢ ( 𝜑 → ( ( 𝐵 + 𝐴 ) / 2 ) < 𝐵 ) |
| 38 | 7 | simp3d | ⊢ ( 𝜑 → 𝐵 ≤ π ) |
| 39 | 18 8 29 37 38 | ltletrd | ⊢ ( 𝜑 → ( ( 𝐵 + 𝐴 ) / 2 ) < π ) |
| 40 | 0xr | ⊢ 0 ∈ ℝ* | |
| 41 | 5 | rexri | ⊢ π ∈ ℝ* |
| 42 | elioo2 | ⊢ ( ( 0 ∈ ℝ* ∧ π ∈ ℝ* ) → ( ( ( 𝐵 + 𝐴 ) / 2 ) ∈ ( 0 (,) π ) ↔ ( ( ( 𝐵 + 𝐴 ) / 2 ) ∈ ℝ ∧ 0 < ( ( 𝐵 + 𝐴 ) / 2 ) ∧ ( ( 𝐵 + 𝐴 ) / 2 ) < π ) ) ) | |
| 43 | 40 41 42 | mp2an | ⊢ ( ( ( 𝐵 + 𝐴 ) / 2 ) ∈ ( 0 (,) π ) ↔ ( ( ( 𝐵 + 𝐴 ) / 2 ) ∈ ℝ ∧ 0 < ( ( 𝐵 + 𝐴 ) / 2 ) ∧ ( ( 𝐵 + 𝐴 ) / 2 ) < π ) ) |
| 44 | 18 28 39 43 | syl3anbrc | ⊢ ( 𝜑 → ( ( 𝐵 + 𝐴 ) / 2 ) ∈ ( 0 (,) π ) ) |
| 45 | sinq12gt0 | ⊢ ( ( ( 𝐵 + 𝐴 ) / 2 ) ∈ ( 0 (,) π ) → 0 < ( sin ‘ ( ( 𝐵 + 𝐴 ) / 2 ) ) ) | |
| 46 | 44 45 | syl | ⊢ ( 𝜑 → 0 < ( sin ‘ ( ( 𝐵 + 𝐴 ) / 2 ) ) ) |
| 47 | 19 46 | elrpd | ⊢ ( 𝜑 → ( sin ‘ ( ( 𝐵 + 𝐴 ) / 2 ) ) ∈ ℝ+ ) |
| 48 | 8 12 | resubcld | ⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 49 | 48 | rehalfcld | ⊢ ( 𝜑 → ( ( 𝐵 − 𝐴 ) / 2 ) ∈ ℝ ) |
| 50 | 49 | resincld | ⊢ ( 𝜑 → ( sin ‘ ( ( 𝐵 − 𝐴 ) / 2 ) ) ∈ ℝ ) |
| 51 | 12 8 | posdifd | ⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵 − 𝐴 ) ) ) |
| 52 | 3 51 | mpbid | ⊢ ( 𝜑 → 0 < ( 𝐵 − 𝐴 ) ) |
| 53 | divgt0 | ⊢ ( ( ( ( 𝐵 − 𝐴 ) ∈ ℝ ∧ 0 < ( 𝐵 − 𝐴 ) ) ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → 0 < ( ( 𝐵 − 𝐴 ) / 2 ) ) | |
| 54 | 24 25 53 | mpanr12 | ⊢ ( ( ( 𝐵 − 𝐴 ) ∈ ℝ ∧ 0 < ( 𝐵 − 𝐴 ) ) → 0 < ( ( 𝐵 − 𝐴 ) / 2 ) ) |
| 55 | 48 52 54 | syl2anc | ⊢ ( 𝜑 → 0 < ( ( 𝐵 − 𝐴 ) / 2 ) ) |
| 56 | rehalfcl | ⊢ ( π ∈ ℝ → ( π / 2 ) ∈ ℝ ) | |
| 57 | 5 56 | mp1i | ⊢ ( 𝜑 → ( π / 2 ) ∈ ℝ ) |
| 58 | 8 12 | subge02d | ⊢ ( 𝜑 → ( 0 ≤ 𝐴 ↔ ( 𝐵 − 𝐴 ) ≤ 𝐵 ) ) |
| 59 | 21 58 | mpbid | ⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ≤ 𝐵 ) |
| 60 | 48 8 29 59 38 | letrd | ⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ≤ π ) |
| 61 | lediv1 | ⊢ ( ( ( 𝐵 − 𝐴 ) ∈ ℝ ∧ π ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 𝐵 − 𝐴 ) ≤ π ↔ ( ( 𝐵 − 𝐴 ) / 2 ) ≤ ( π / 2 ) ) ) | |
| 62 | 48 29 33 34 61 | syl112anc | ⊢ ( 𝜑 → ( ( 𝐵 − 𝐴 ) ≤ π ↔ ( ( 𝐵 − 𝐴 ) / 2 ) ≤ ( π / 2 ) ) ) |
| 63 | 60 62 | mpbid | ⊢ ( 𝜑 → ( ( 𝐵 − 𝐴 ) / 2 ) ≤ ( π / 2 ) ) |
| 64 | pirp | ⊢ π ∈ ℝ+ | |
| 65 | rphalflt | ⊢ ( π ∈ ℝ+ → ( π / 2 ) < π ) | |
| 66 | 64 65 | mp1i | ⊢ ( 𝜑 → ( π / 2 ) < π ) |
| 67 | 49 57 29 63 66 | lelttrd | ⊢ ( 𝜑 → ( ( 𝐵 − 𝐴 ) / 2 ) < π ) |
| 68 | elioo2 | ⊢ ( ( 0 ∈ ℝ* ∧ π ∈ ℝ* ) → ( ( ( 𝐵 − 𝐴 ) / 2 ) ∈ ( 0 (,) π ) ↔ ( ( ( 𝐵 − 𝐴 ) / 2 ) ∈ ℝ ∧ 0 < ( ( 𝐵 − 𝐴 ) / 2 ) ∧ ( ( 𝐵 − 𝐴 ) / 2 ) < π ) ) ) | |
| 69 | 40 41 68 | mp2an | ⊢ ( ( ( 𝐵 − 𝐴 ) / 2 ) ∈ ( 0 (,) π ) ↔ ( ( ( 𝐵 − 𝐴 ) / 2 ) ∈ ℝ ∧ 0 < ( ( 𝐵 − 𝐴 ) / 2 ) ∧ ( ( 𝐵 − 𝐴 ) / 2 ) < π ) ) |
| 70 | 49 55 67 69 | syl3anbrc | ⊢ ( 𝜑 → ( ( 𝐵 − 𝐴 ) / 2 ) ∈ ( 0 (,) π ) ) |
| 71 | sinq12gt0 | ⊢ ( ( ( 𝐵 − 𝐴 ) / 2 ) ∈ ( 0 (,) π ) → 0 < ( sin ‘ ( ( 𝐵 − 𝐴 ) / 2 ) ) ) | |
| 72 | 70 71 | syl | ⊢ ( 𝜑 → 0 < ( sin ‘ ( ( 𝐵 − 𝐴 ) / 2 ) ) ) |
| 73 | 50 72 | elrpd | ⊢ ( 𝜑 → ( sin ‘ ( ( 𝐵 − 𝐴 ) / 2 ) ) ∈ ℝ+ ) |
| 74 | 47 73 | rpmulcld | ⊢ ( 𝜑 → ( ( sin ‘ ( ( 𝐵 + 𝐴 ) / 2 ) ) · ( sin ‘ ( ( 𝐵 − 𝐴 ) / 2 ) ) ) ∈ ℝ+ ) |
| 75 | rpmulcl | ⊢ ( ( 2 ∈ ℝ+ ∧ ( ( sin ‘ ( ( 𝐵 + 𝐴 ) / 2 ) ) · ( sin ‘ ( ( 𝐵 − 𝐴 ) / 2 ) ) ) ∈ ℝ+ ) → ( 2 · ( ( sin ‘ ( ( 𝐵 + 𝐴 ) / 2 ) ) · ( sin ‘ ( ( 𝐵 − 𝐴 ) / 2 ) ) ) ) ∈ ℝ+ ) | |
| 76 | 16 74 75 | sylancr | ⊢ ( 𝜑 → ( 2 · ( ( sin ‘ ( ( 𝐵 + 𝐴 ) / 2 ) ) · ( sin ‘ ( ( 𝐵 − 𝐴 ) / 2 ) ) ) ) ∈ ℝ+ ) |
| 77 | 15 76 | eqeltrd | ⊢ ( 𝜑 → ( ( cos ‘ 𝐴 ) − ( cos ‘ 𝐵 ) ) ∈ ℝ+ ) |
| 78 | 8 | recoscld | ⊢ ( 𝜑 → ( cos ‘ 𝐵 ) ∈ ℝ ) |
| 79 | 12 | recoscld | ⊢ ( 𝜑 → ( cos ‘ 𝐴 ) ∈ ℝ ) |
| 80 | difrp | ⊢ ( ( ( cos ‘ 𝐵 ) ∈ ℝ ∧ ( cos ‘ 𝐴 ) ∈ ℝ ) → ( ( cos ‘ 𝐵 ) < ( cos ‘ 𝐴 ) ↔ ( ( cos ‘ 𝐴 ) − ( cos ‘ 𝐵 ) ) ∈ ℝ+ ) ) | |
| 81 | 78 79 80 | syl2anc | ⊢ ( 𝜑 → ( ( cos ‘ 𝐵 ) < ( cos ‘ 𝐴 ) ↔ ( ( cos ‘ 𝐴 ) − ( cos ‘ 𝐵 ) ) ∈ ℝ+ ) ) |
| 82 | 77 81 | mpbird | ⊢ ( 𝜑 → ( cos ‘ 𝐵 ) < ( cos ‘ 𝐴 ) ) |