This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cosine is less than one between zero and 2 x. _pi . (Contributed by Jim Kingdon, 23-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cos02pilt1 | ⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → ( cos ‘ 𝐴 ) < 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioore | ⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → 𝐴 ∈ ℝ ) | |
| 2 | 1 | recoscld | ⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → ( cos ‘ 𝐴 ) ∈ ℝ ) |
| 3 | 1red | ⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → 1 ∈ ℝ ) | |
| 4 | cosbnd | ⊢ ( 𝐴 ∈ ℝ → ( - 1 ≤ ( cos ‘ 𝐴 ) ∧ ( cos ‘ 𝐴 ) ≤ 1 ) ) | |
| 5 | 4 | simprd | ⊢ ( 𝐴 ∈ ℝ → ( cos ‘ 𝐴 ) ≤ 1 ) |
| 6 | 1 5 | syl | ⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → ( cos ‘ 𝐴 ) ≤ 1 ) |
| 7 | 0zd | ⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → 0 ∈ ℤ ) | |
| 8 | 2re | ⊢ 2 ∈ ℝ | |
| 9 | pire | ⊢ π ∈ ℝ | |
| 10 | 8 9 | remulcli | ⊢ ( 2 · π ) ∈ ℝ |
| 11 | 10 | a1i | ⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → ( 2 · π ) ∈ ℝ ) |
| 12 | 0xr | ⊢ 0 ∈ ℝ* | |
| 13 | 10 | rexri | ⊢ ( 2 · π ) ∈ ℝ* |
| 14 | elioo2 | ⊢ ( ( 0 ∈ ℝ* ∧ ( 2 · π ) ∈ ℝ* ) → ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < ( 2 · π ) ) ) ) | |
| 15 | 12 13 14 | mp2an | ⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < ( 2 · π ) ) ) |
| 16 | 15 | simp2bi | ⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → 0 < 𝐴 ) |
| 17 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 18 | pirp | ⊢ π ∈ ℝ+ | |
| 19 | rpmulcl | ⊢ ( ( 2 ∈ ℝ+ ∧ π ∈ ℝ+ ) → ( 2 · π ) ∈ ℝ+ ) | |
| 20 | 17 18 19 | mp2an | ⊢ ( 2 · π ) ∈ ℝ+ |
| 21 | rpgt0 | ⊢ ( ( 2 · π ) ∈ ℝ+ → 0 < ( 2 · π ) ) | |
| 22 | 20 21 | mp1i | ⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → 0 < ( 2 · π ) ) |
| 23 | 1 11 16 22 | divgt0d | ⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → 0 < ( 𝐴 / ( 2 · π ) ) ) |
| 24 | 20 | a1i | ⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → ( 2 · π ) ∈ ℝ+ ) |
| 25 | 15 | simp3bi | ⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → 𝐴 < ( 2 · π ) ) |
| 26 | 1 11 24 25 | ltdiv1dd | ⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → ( 𝐴 / ( 2 · π ) ) < ( ( 2 · π ) / ( 2 · π ) ) ) |
| 27 | 11 | recnd | ⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → ( 2 · π ) ∈ ℂ ) |
| 28 | 22 | gt0ne0d | ⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → ( 2 · π ) ≠ 0 ) |
| 29 | 27 28 | dividd | ⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → ( ( 2 · π ) / ( 2 · π ) ) = 1 ) |
| 30 | 26 29 | breqtrd | ⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → ( 𝐴 / ( 2 · π ) ) < 1 ) |
| 31 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 32 | 30 31 | breqtrrdi | ⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → ( 𝐴 / ( 2 · π ) ) < ( 0 + 1 ) ) |
| 33 | btwnnz | ⊢ ( ( 0 ∈ ℤ ∧ 0 < ( 𝐴 / ( 2 · π ) ) ∧ ( 𝐴 / ( 2 · π ) ) < ( 0 + 1 ) ) → ¬ ( 𝐴 / ( 2 · π ) ) ∈ ℤ ) | |
| 34 | 7 23 32 33 | syl3anc | ⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → ¬ ( 𝐴 / ( 2 · π ) ) ∈ ℤ ) |
| 35 | 1 | recnd | ⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → 𝐴 ∈ ℂ ) |
| 36 | coseq1 | ⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ 𝐴 ) = 1 ↔ ( 𝐴 / ( 2 · π ) ) ∈ ℤ ) ) | |
| 37 | 35 36 | syl | ⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → ( ( cos ‘ 𝐴 ) = 1 ↔ ( 𝐴 / ( 2 · π ) ) ∈ ℤ ) ) |
| 38 | 34 37 | mtbird | ⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → ¬ ( cos ‘ 𝐴 ) = 1 ) |
| 39 | 38 | neqned | ⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → ( cos ‘ 𝐴 ) ≠ 1 ) |
| 40 | 39 | necomd | ⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → 1 ≠ ( cos ‘ 𝐴 ) ) |
| 41 | 2 3 6 40 | leneltd | ⊢ ( 𝐴 ∈ ( 0 (,) ( 2 · π ) ) → ( cos ‘ 𝐴 ) < 1 ) |