This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cosine is one-to-one over the closed interval from 0 to _pi . (Contributed by Paul Chapman, 16-Mar-2008) (Proof shortened by Mario Carneiro, 10-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cos11 | ⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( 𝐴 = 𝐵 ↔ ( cos ‘ 𝐴 ) = ( cos ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom | ⊢ ( ( ¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴 ) ↔ ( ¬ 𝐵 < 𝐴 ∧ ¬ 𝐴 < 𝐵 ) ) | |
| 2 | cosord | ⊢ ( ( 𝐵 ∈ ( 0 [,] π ) ∧ 𝐴 ∈ ( 0 [,] π ) ) → ( 𝐵 < 𝐴 ↔ ( cos ‘ 𝐴 ) < ( cos ‘ 𝐵 ) ) ) | |
| 3 | 2 | ancoms | ⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( 𝐵 < 𝐴 ↔ ( cos ‘ 𝐴 ) < ( cos ‘ 𝐵 ) ) ) |
| 4 | 3 | notbid | ⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( ¬ 𝐵 < 𝐴 ↔ ¬ ( cos ‘ 𝐴 ) < ( cos ‘ 𝐵 ) ) ) |
| 5 | cosord | ⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( 𝐴 < 𝐵 ↔ ( cos ‘ 𝐵 ) < ( cos ‘ 𝐴 ) ) ) | |
| 6 | 5 | notbid | ⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( ¬ 𝐴 < 𝐵 ↔ ¬ ( cos ‘ 𝐵 ) < ( cos ‘ 𝐴 ) ) ) |
| 7 | 4 6 | anbi12d | ⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( ( ¬ 𝐵 < 𝐴 ∧ ¬ 𝐴 < 𝐵 ) ↔ ( ¬ ( cos ‘ 𝐴 ) < ( cos ‘ 𝐵 ) ∧ ¬ ( cos ‘ 𝐵 ) < ( cos ‘ 𝐴 ) ) ) ) |
| 8 | 1 7 | bitrid | ⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( ( ¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴 ) ↔ ( ¬ ( cos ‘ 𝐴 ) < ( cos ‘ 𝐵 ) ∧ ¬ ( cos ‘ 𝐵 ) < ( cos ‘ 𝐴 ) ) ) ) |
| 9 | 0re | ⊢ 0 ∈ ℝ | |
| 10 | pire | ⊢ π ∈ ℝ | |
| 11 | 9 10 | elicc2i | ⊢ ( 𝐴 ∈ ( 0 [,] π ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ π ) ) |
| 12 | 11 | simp1bi | ⊢ ( 𝐴 ∈ ( 0 [,] π ) → 𝐴 ∈ ℝ ) |
| 13 | 9 10 | elicc2i | ⊢ ( 𝐵 ∈ ( 0 [,] π ) ↔ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ π ) ) |
| 14 | 13 | simp1bi | ⊢ ( 𝐵 ∈ ( 0 [,] π ) → 𝐵 ∈ ℝ ) |
| 15 | lttri3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 = 𝐵 ↔ ( ¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴 ) ) ) | |
| 16 | 12 14 15 | syl2an | ⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( 𝐴 = 𝐵 ↔ ( ¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴 ) ) ) |
| 17 | recoscl | ⊢ ( 𝐴 ∈ ℝ → ( cos ‘ 𝐴 ) ∈ ℝ ) | |
| 18 | recoscl | ⊢ ( 𝐵 ∈ ℝ → ( cos ‘ 𝐵 ) ∈ ℝ ) | |
| 19 | lttri3 | ⊢ ( ( ( cos ‘ 𝐴 ) ∈ ℝ ∧ ( cos ‘ 𝐵 ) ∈ ℝ ) → ( ( cos ‘ 𝐴 ) = ( cos ‘ 𝐵 ) ↔ ( ¬ ( cos ‘ 𝐴 ) < ( cos ‘ 𝐵 ) ∧ ¬ ( cos ‘ 𝐵 ) < ( cos ‘ 𝐴 ) ) ) ) | |
| 20 | 17 18 19 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( cos ‘ 𝐴 ) = ( cos ‘ 𝐵 ) ↔ ( ¬ ( cos ‘ 𝐴 ) < ( cos ‘ 𝐵 ) ∧ ¬ ( cos ‘ 𝐵 ) < ( cos ‘ 𝐴 ) ) ) ) |
| 21 | 12 14 20 | syl2an | ⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( ( cos ‘ 𝐴 ) = ( cos ‘ 𝐵 ) ↔ ( ¬ ( cos ‘ 𝐴 ) < ( cos ‘ 𝐵 ) ∧ ¬ ( cos ‘ 𝐵 ) < ( cos ‘ 𝐴 ) ) ) ) |
| 22 | 8 16 21 | 3bitr4d | ⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( 𝐴 = 𝐵 ↔ ( cos ‘ 𝐴 ) = ( cos ‘ 𝐵 ) ) ) |