This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complementation is an antiautomorphism on power set lattices. (Contributed by Stefan O'Rear, 4-Nov-2014) (Proof shortened by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | compss.a | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑥 ) ) | |
| Assertion | compssiso | ⊢ ( 𝐴 ∈ 𝑉 → 𝐹 Isom [⊊] , ◡ [⊊] ( 𝒫 𝐴 , 𝒫 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | compss.a | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑥 ) ) | |
| 2 | difexg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∖ 𝑥 ) ∈ V ) | |
| 3 | 2 | ralrimivw | ⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝐴 ∖ 𝑥 ) ∈ V ) |
| 4 | 1 | fnmpt | ⊢ ( ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝐴 ∖ 𝑥 ) ∈ V → 𝐹 Fn 𝒫 𝐴 ) |
| 5 | 3 4 | syl | ⊢ ( 𝐴 ∈ 𝑉 → 𝐹 Fn 𝒫 𝐴 ) |
| 6 | 1 | compsscnv | ⊢ ◡ 𝐹 = 𝐹 |
| 7 | 6 | fneq1i | ⊢ ( ◡ 𝐹 Fn 𝒫 𝐴 ↔ 𝐹 Fn 𝒫 𝐴 ) |
| 8 | 5 7 | sylibr | ⊢ ( 𝐴 ∈ 𝑉 → ◡ 𝐹 Fn 𝒫 𝐴 ) |
| 9 | dff1o4 | ⊢ ( 𝐹 : 𝒫 𝐴 –1-1-onto→ 𝒫 𝐴 ↔ ( 𝐹 Fn 𝒫 𝐴 ∧ ◡ 𝐹 Fn 𝒫 𝐴 ) ) | |
| 10 | 5 8 9 | sylanbrc | ⊢ ( 𝐴 ∈ 𝑉 → 𝐹 : 𝒫 𝐴 –1-1-onto→ 𝒫 𝐴 ) |
| 11 | elpwi | ⊢ ( 𝑏 ∈ 𝒫 𝐴 → 𝑏 ⊆ 𝐴 ) | |
| 12 | 11 | ad2antll | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ) → 𝑏 ⊆ 𝐴 ) |
| 13 | 1 | isf34lem1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑏 ⊆ 𝐴 ) → ( 𝐹 ‘ 𝑏 ) = ( 𝐴 ∖ 𝑏 ) ) |
| 14 | 12 13 | syldan | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ) → ( 𝐹 ‘ 𝑏 ) = ( 𝐴 ∖ 𝑏 ) ) |
| 15 | elpwi | ⊢ ( 𝑎 ∈ 𝒫 𝐴 → 𝑎 ⊆ 𝐴 ) | |
| 16 | 15 | ad2antrl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ) → 𝑎 ⊆ 𝐴 ) |
| 17 | 1 | isf34lem1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑎 ⊆ 𝐴 ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐴 ∖ 𝑎 ) ) |
| 18 | 16 17 | syldan | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐴 ∖ 𝑎 ) ) |
| 19 | 14 18 | psseq12d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ) → ( ( 𝐹 ‘ 𝑏 ) ⊊ ( 𝐹 ‘ 𝑎 ) ↔ ( 𝐴 ∖ 𝑏 ) ⊊ ( 𝐴 ∖ 𝑎 ) ) ) |
| 20 | difss | ⊢ ( 𝐴 ∖ 𝑎 ) ⊆ 𝐴 | |
| 21 | pssdifcom1 | ⊢ ( ( 𝑏 ⊆ 𝐴 ∧ ( 𝐴 ∖ 𝑎 ) ⊆ 𝐴 ) → ( ( 𝐴 ∖ 𝑏 ) ⊊ ( 𝐴 ∖ 𝑎 ) ↔ ( 𝐴 ∖ ( 𝐴 ∖ 𝑎 ) ) ⊊ 𝑏 ) ) | |
| 22 | 12 20 21 | sylancl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ) → ( ( 𝐴 ∖ 𝑏 ) ⊊ ( 𝐴 ∖ 𝑎 ) ↔ ( 𝐴 ∖ ( 𝐴 ∖ 𝑎 ) ) ⊊ 𝑏 ) ) |
| 23 | dfss4 | ⊢ ( 𝑎 ⊆ 𝐴 ↔ ( 𝐴 ∖ ( 𝐴 ∖ 𝑎 ) ) = 𝑎 ) | |
| 24 | 16 23 | sylib | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ) → ( 𝐴 ∖ ( 𝐴 ∖ 𝑎 ) ) = 𝑎 ) |
| 25 | 24 | psseq1d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ) → ( ( 𝐴 ∖ ( 𝐴 ∖ 𝑎 ) ) ⊊ 𝑏 ↔ 𝑎 ⊊ 𝑏 ) ) |
| 26 | 19 22 25 | 3bitrrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ) → ( 𝑎 ⊊ 𝑏 ↔ ( 𝐹 ‘ 𝑏 ) ⊊ ( 𝐹 ‘ 𝑎 ) ) ) |
| 27 | vex | ⊢ 𝑏 ∈ V | |
| 28 | 27 | brrpss | ⊢ ( 𝑎 [⊊] 𝑏 ↔ 𝑎 ⊊ 𝑏 ) |
| 29 | fvex | ⊢ ( 𝐹 ‘ 𝑎 ) ∈ V | |
| 30 | 29 | brrpss | ⊢ ( ( 𝐹 ‘ 𝑏 ) [⊊] ( 𝐹 ‘ 𝑎 ) ↔ ( 𝐹 ‘ 𝑏 ) ⊊ ( 𝐹 ‘ 𝑎 ) ) |
| 31 | 26 28 30 | 3bitr4g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ) → ( 𝑎 [⊊] 𝑏 ↔ ( 𝐹 ‘ 𝑏 ) [⊊] ( 𝐹 ‘ 𝑎 ) ) ) |
| 32 | relrpss | ⊢ Rel [⊊] | |
| 33 | 32 | relbrcnv | ⊢ ( ( 𝐹 ‘ 𝑎 ) ◡ [⊊] ( 𝐹 ‘ 𝑏 ) ↔ ( 𝐹 ‘ 𝑏 ) [⊊] ( 𝐹 ‘ 𝑎 ) ) |
| 34 | 31 33 | bitr4di | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ) → ( 𝑎 [⊊] 𝑏 ↔ ( 𝐹 ‘ 𝑎 ) ◡ [⊊] ( 𝐹 ‘ 𝑏 ) ) ) |
| 35 | 34 | ralrimivva | ⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑎 ∈ 𝒫 𝐴 ∀ 𝑏 ∈ 𝒫 𝐴 ( 𝑎 [⊊] 𝑏 ↔ ( 𝐹 ‘ 𝑎 ) ◡ [⊊] ( 𝐹 ‘ 𝑏 ) ) ) |
| 36 | df-isom | ⊢ ( 𝐹 Isom [⊊] , ◡ [⊊] ( 𝒫 𝐴 , 𝒫 𝐴 ) ↔ ( 𝐹 : 𝒫 𝐴 –1-1-onto→ 𝒫 𝐴 ∧ ∀ 𝑎 ∈ 𝒫 𝐴 ∀ 𝑏 ∈ 𝒫 𝐴 ( 𝑎 [⊊] 𝑏 ↔ ( 𝐹 ‘ 𝑎 ) ◡ [⊊] ( 𝐹 ‘ 𝑏 ) ) ) ) | |
| 37 | 10 35 36 | sylanbrc | ⊢ ( 𝐴 ∈ 𝑉 → 𝐹 Isom [⊊] , ◡ [⊊] ( 𝒫 𝐴 , 𝒫 𝐴 ) ) |